Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Metematika_ekz_1.doc
Скачиваний:
0
Добавлен:
26.12.2019
Размер:
2.62 Mб
Скачать

8. Уравнение линии и поверхности.

1. Уравнение сферы. Сфера- геометрическое место точек, равноудаленных от 1ой точки, называемой центром.

O (a,b,c)

|OM|=r, OM={x-a,y-b,z-c}

r2=(x-a)2+(y-b)2+(z-c)2- уравнение сферы. x2+y2+z2=r2- ур-е сферы с центром точке(0,0).

F(x,y,z)=0- ур-е поверхности - ур-ю, удовлетворяющему координатам x,y,z любой точки, лежащей на поверхности.

2. Уравнение окружности

|OM|=r, OM={x-a,y-b)

r2=(x-a)2+(y-b)2+(z-c)2- ур-е окружности

а=b=0, то x2+y2=r2

F(x,y)=0- ур-е линии на плоскости.

9. Плоскость в пространстве.

Ур-е в плоскости, проходящей через данную точку, перпендикулярно заданному вектору.

N -вектор нормали

M0M{x-x0,y-y0,z-z0}

Для того, чтобы точка MP, необходимо и достаточно чтобы вектора NM0M(т.е. N*M0M=0)

A(x-x0)+B(y-y0)+С(z-z0)=0 - ур-е плоскости, проходящей через данную точку вектору.

10. Общее уравнение плоскости.

Ax+By+Сz-Ax0-By0-Сz0=0

-Ax0-By0-Сz0=D, где D=Ax+By+Сz

Ax+By+Сz+D=0

Частный случай:

Если D=0, то Ax+By+Сz=0(проходит ч/з 0;0)

Если A=0, то By+Сz+D=0

Если B=0, то Ax +Сz+D=0

Если C=0, то Ax+By+D=0

Если A=B=0, то Сz+D=0

Если A=C=0, то By+D=0

Если A=D=0, то By+Сz=0

Если B=D=0, то Ay+Сz=0

11. Взаимное расположение плоскостей.

N1,N2-нормальные векторы плоскости.

P:A1x+B1y+C1z+D1=0

Q:A2x+B2y+C2z+D2=0

PQ{A1,B1,C1}

QN2{A2,B2,C2}

1)Пусть PQ<=>N1N2

A1A2+B1B2+C1C2=0 условие перпендикулярности PQ.

2) Пусть PQ<=> N1N2

A1/A2=B1/B2=C1/C2- Условие параллельности 2х плоскостей.

A1/A2=B1/B2=C1/C2=D1/D2- Условие совпадения 2х плоскостей.

12. Каноническое уравнение прямой в пространстве.

M0M{x-x0,y-y0,z-z0}

Чтобы точка Мпрямой(или лежала на ней) необх. и достаточно, чтобы M0M||S

13. Уравнение прямой в пространстве, проходящей ч/з 2 заданные точки.

l m n

S{x2-x1,y2-y1,z2-z1}

14. прямая, как пересечение плоскостей. Нахождение начальной точки и направляющего вектора прямой.

P:A1x+B1y+C1z+D1=0

Q:A2x+B2y+C2z+D2=0

Общее ур-е прямой в пространстве.

Для того, чтобы перейти от общего к каноническому ур-ю прямой, надо задать начальную точку и направляющий вектор:

1. Найдем начальную точку:

Z=0

M0(x0,y0,0), т.к. Z=0

2. Найдем направляющий вектор S-?

PN1{A1,B1,C1}

QN1{A2,B2,C2}

S=N1*N2

16. Взаимное расположение прямой на плоскости.

P:A1x+B1y+C1z+D1=0N1{A1,B1}

Q:A2x+B2y+C2z+D2=0N2{A2,B2}

а)

то

б)

pq<=> N1||N2, то A1/A2=B1/B2

в)

p||q<=> N1N2, то A1A2+B1B2=0

1 7. Общее ур-е прямой линии на плоскости. Его частные случаи.

Сначала запишем ур-е прямой, проходящей через заданную точку  заданному вектору.

M0(x0,y0)

M0M{x-x0,y-y0}

n*M0M=0

A(x-x0)+B(y-y0)=0

Ax+By-Ax0-By0=0

-Ax0-By0=C

Ax+By+C=0-общее уравнение прямой на плоскости.

18.19. Каноническое ур-е прямой линии на плоскости. Ур-е прямой, проходящей ч/з 2 точки. Ур-е с угловым коэффициентом.

y-y1=k1(x-x1)

y=k1x-k1x1+y1

y1-k1x1=b

y=k1x+b

ур-е прямой с угловым коэффициентом k.

П усть даны 2 точки M1(x1,y1), M2(x2,y2) и x1x2, y1y2. Для составления уравнения прямой М1М2 запишем уравнения пучка прямых, проходящих через точку М1: y-y1=k(x-x1). Т.к. М2лежит на данной прямой, то чтобы выделить ее из пучка, подставим координаты точки М2 в уравнение пучка М1: y-y1=k(x-x1) и найдем k:

Теперь вид искомой прямой имеет вид:

или:

- Ур-е прямой, проходящей ч/з 2

2 0,21. Угол м/ду прямыми на плоскости. Условия || и.

а)

S1{l1,m1} S2{l2,m2},

или

p:y=k1x+b1, k1=tg1

q:y=k2x+b2, k2=tg2 =>tg=tg(2-1)=

=(tg2-tg1)/(1+ tg1tg2)=

=(k2-k1)/(1+k1k2).

б) p||q, tg=0, k1=k2

в)pq,то

22. Расстояние от точки до прямой на плоскости и до плоскости в пространстве.

1. Ax+By+C=0, M0(x0,y0)

2. Пусть плоскость задана ур-ем Ax+By+Cz+D=0

23. Кривые линии 2-го порядка.

Кривые 2го порядка описываются с помощью общего ур-я:

Ax2+2Bxy+Cy2+2Dx+2Ey+F=0, где

а) Каноническое ур-е эллипса

- Каноническое ур-е эллипса

Если a=b, то x2+b2=a2 - ур-е окружности.

б) Ур-е гиперболы: x2/a2-y2/b2=1

в) ур-е параболы: y2=2px или y=ax2

г) ур-е сферы: x2+y2+z22 (r2=(x-a)2+(y-b)2+(z-c)2)

д) ур-е эллипса: x2/a2-y2/b2+z2/c2=1

24. Парабола и ее свойства.

Множество точек плоскости, координаты которых по отношению к системе декартовых координат удовлетворяет уравнению y=ax2, где х и у - текущие координаты, а- нек. число, наз. параболой.

Е сли вершина нах. в О(0,0), то ур-е примет вид

y2=2px-симметрично отн. оси ОХ

х2=2pу-симметрично отн. оси ОУ

Точка F(p/2,0) наз. фокусом параболы, а прямая x=-p/2 - ее директриса.

Любой точке М(х,у), принадлежащей параболе, расстояние до фокуса = r=p/2

Св-ва:

1. парабола предст. собой  точек плоскости, равноотстающих от фокуса и от директрисы y=ax2.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]