- •41. Романцемент.
- •42. Портландцемент. Химический и минералогический состав клинкера.
- •43. Характеристика клинкера.
- •44. Способы производства пц.
- •46. Мокрый способ производстваПц.
- •48. Процессы, протекающие при обжиге клинкера.
- •47. Приготовление сырьевой смеси.
- •49. Сухой способ производства.
- •50. Помол клинкера. Получение цемента.
- •51. Хранение, упаковка цемента. Контроль производства цемента.
- •Контроль производства цемента.
- •52. Твердение цемента. Взаимодействие цемента с водой и химический состав новообразований.
- •53. Теория твердения пц.
- •54. Структурная вязкость и пластическая прочность теста пц, седиментационные явления в тесте пц.
- •55. Тепловыделения при взаимодействии цемента с водой.
- •56. Контракция и пористость цементного камня.
- •58. Формы связи воды в цементном тесте и камне.
- •59. Щелочность жидкой фазы цементного камня. Защита стали от коррозии.
- •60. Свойства пц. Плотность, водопотребность, схватывание.
- •61. Свойства пц. Усадка и набухание цементного камня, стойкость к увлажнению и высушиванию, трещиностойкость, ползучесть цементного камня.
- •62. Свойства пц. Равномерность изменения объема, активность и прочность.
- •63,64. Химическая коррозиия органических/ неорганических веществ.
- •65.Физическая коррозия цементного камня. Морозостойкость, жаростойкость, огнеупорность цементов.
- •66. Разновидность пц. Бтц, пластифицирующие и гидрофобные цементы.
- •67. Разновидность пц. Сульфатостойкие, белые и цветные пц.
- •68. Разновидность пц. Пц для изготовления дорожных и аэродромных покрытий, для производства асбестоцементных изделий, для растворов и бетонов автоклавного твердения.
- •69. Активные минеральные добавки. Природные минеральные добавки.
- •70. Искусственные кислые амд.
63,64. Химическая коррозиия органических/ неорганических веществ.
Проблема долговечности цементов и бетонов еще с конца XIX в. изучалась отечественными учеными, установившими причины и факторы коррозии и предложившими эффективные меры по увеличению стойкости (А. Р. Шуляченко, В. И. Чарномским, А. А. Байковым, В. А. Киндом, В. Н. Юигом и др.).
В. М. Москвин разделяет коррозионные процессы, возникающие в цементных бетонах при действии водной среды, по основным признакам на три группы. К первой группе (коррозия I вида) он относит процессы, протекающие в бетоне под действием вод с малой временной жесткостью. При этом некоторые составляющие цементного камня растворяются в воде и уносятся при ее фильтрации сквозь толщу бетона.
Ко второй группе (коррозия II вида) относятся процессы, развивающиеся в бетоне под действием вод, содержащих вещества, вступающие в химические реакции с цементным камнем. Образующиеся при этом продукты реакций либо легкорастворимы и уносятся водой, либо выделяются на месте реакции в виде аморфных масс, не обладающих вяжущими свойствами. К этой группе могут быть отнесены, например, процессы коррозии, связанные с воздействием на бетон различных кислот, магнезиальных и других солей.
В третьей группе (коррозия III вида) объединены процессы коррозии, вызванные обменными реакциями с составляющими цементного камня, дающими продукты, которые, кристаллизуясь в порах и капиллярах, разрушают его. К этому же виду относятся процессы коррозии, обусловленные отложением в порах камня солей, выделяющихся из испаряющихся растворов, насыщающих бетой.
классификацию основных видов коррозии бетона под действием природных вод: 1) коррозия выщелачивания, вызываемая растворением гидроксида кальция, содержащегося в цементном камне, и выносом его из бетона; 2) кислотная коррозия — результат действия кислот при значениях показателя рН менее 7; 3) углекислотная коррозия, обусловленная действием на цементный камень углекислоты и являющаяся частным случаем кислотной коррозии; 4) сульфатная коррозия, подразделяемая на суль-фоалюмииатиую, вызываемую действием на цемент ионов SCXf при их концентрации от 250—300 до 1000 мг/л;
Все эти виды коррозии возможны в результате действия не только природных, но и промышленных и бытовых сточных вод.
Виды коррозий
Кислотная коррозия
Углекислая коррозия
Сульфоалюминатная коррозия
Сульфоалюминатная коррозия
Магнезиальная коррозия
Сульфатно-магнезиальная коррозия
65.Физическая коррозия цементного камня. Морозостойкость, жаростойкость, огнеупорность цементов.
К числу физических факторов, вызывающих коррозию цементного камня и бетона, относят их попеременное увлажнение и высыхание, которое сопровождается деформациями усадки и набухания материала, отложение растворимых солей в порах цементного камня, попеременное замерзание и оттаивание бетона, особенно в водонасыщенном состоянии.
Солевая форма коррозии (III вид коррозии). Отложение солей в порах цементного камня возможно и при химической коррозии, сопровождающейся, в частности, образованием гидротрисульфоалюмината кальция (эттрннгита), а также двуводного гипса. Исследования показывают, что чем больше прочность цементного камня и чем меньше его пористость, особенно открытая, тем выше его стойкость в условиях солевой коррозии. Разрушительное действие попеременного замерзания и оттаивания усиливается в тех случаях, когда вода (например, морская) содержит значительное количество различных солей. Наконец, конструкции, находящиеся в напряженном состоянии, при прочих равных условиях подвержены более интенсивному разрушению.
Высокая морозостойкость цементного камня и бетонов — важнейшее свойство, в большой мере определяющее долговечность различных сооружений, особенно гидротехнических, дорожных, ирригационных.
Морозостойкость цементного камня зависит от значения его общей пористости и ее характера. Чем меньше общая пористость, тем выше морозостойкость цементного камня. Уменьшение общей пористости достигается, во-первых, снижением водоцементного для повышения морозостойкости цементного камня и бетона применяют добавки: пластифицирующие, способствующие уплотнению камня вследствие уменьшения его водопотребности при сохранении подвижности; воздухововлекающие (пенообразователи); гидрофобизирующие.
Цементный камень — несгораемый материал, он не плавится при температурах до 1100°С. Однако заметное температурное воздействие на затвердевшие цементы и бетоны начинает проявляться уже при 150—200 °С, оно резко возрастает при 500—700 °С и выше. Это вызывает, в первую очередь, разложение гидратиых соединений — гидросульфоалюмииатов кальция, а в последующем гидросиликатов и Са(ОН)2, а также изменение прочности, усадочные деформации и т. п.
Добавки шамота, хромомагнезита и т. д. придают затвердевшему цементу значительную огнеупорность, т. е. способность длительно сохранять прочность и стойкость при высоких температурах. Такие смеси применяют для изготовления жароупорных бетонов с показателями огнеупорности до 1400—1700 °С. При этом в качестве заполнителей бетонов используют материалы соответствующей огнеупорности (шамот и др.).
