
- •Модель строения атома по Резерфорду. Атомные спектры. Уравнение Ридберга. Соотношение Планка.
- •Модель Бора строения атома водорода. Постулаты Бора
- •Соотношение де Бройля. Корпускулярно-волновой дуализм. Волновая функция электрона. Атомная орбиталь.
- •Квантовые числа и их физический смысл. Электронное облако
- •Многоэлектронные атомы. Понятие уровня, подуровня. Принцип минимальной энергии. Принцип Паули, правило Гунда.
- •Периодическая система элементов. Строение атома. Порядок заполнения разрешенных состояний при переходе от элемента к элементу в периодах. Причина периодичности.
- •Порядок заполнения энергетических уровней в атомах. Правило Клечковского.
- •Энергетическое состояние электронов внешних уровней. Энергия ионизации. Сродство к электрону. Электроотрицательность. Размеры атомов и ионов.
- •Газообразное состояние вещества. Законы идеальных газов. Закон Авогадро. Уравнение состояния идеального газа. Реальные газы.
- •Жидкое состояние вещества. Свойства жидкостей. Жидкие кристаллы. Переохлажденные жидкости.
- •Сигма-,пи-,и дельта-связи.
- •Гибридизация атомных орбиталей. Пространственная конфигурация молекул.
- •Метод валентных связей. Валентность. Обменный механизм образования ковалентной связи.
- •Донорно-акцепторный механизм образования ковалентной связи.
- •Комплексные соединения. Структура комплексного соединения.
- •Межмолекулярные взаимодействия. Слабые и сильные взаимодействия.
- •Химическая связь в твердых телах. Металлические, ионные, атомно-ковалентные и молекулярные кристаллы.
- •Метод молекулярных орбиталей. Связывающая и разрыхляющая молекулярные орбитали.
- •Ионная связь. Степень ионности связи.
- •Слабые межмолекулярные взаимодействия. Силы Ван Дер Ваальса.
- •Сильные межмолекулярные взаимодействия. Водородная и ковалентная связи.
- •Вопросы изучаемые химической термодинамикой. Система и окружающая среда. Внутренняя энергия, теплота, работа.
- •Первый закон термодинамики. Энтальпия системы.
- •Тепловой эффект химической реакции. Независимость теплового эффекта реакции от пути процесса. Закон Гесса.
- •Стандартное состояние. Теплота образования. Расчет тепловых эффектов по теплотам образования.
- •Теплоёмкость системы. Изобарная и изохорная теплоёмкости. Уравнение Кирхгофа.
- •Самопроизвольные и несамопроизвольные процессы. Энтропия. Третий закон термодинамики. Постклат Планка. Абсолютная энтрапия.
- •Второй закон термодинамики для изолированных систем.
- •Статическая трактовка энтропии. Уравнение Больцмана.
- •Термодинамический потенциал (энергия) Гиббса. Направление и предел протекания самопроизвольных процессов. Состояние равновесия.
- •Химическое равновесие. Смещение химического равновесия. Принцип Ле-Шателье.
- •Фазовые равновесия. Правило фаз Гиббса.
- •Однокомпонентные системы. Диаграмма состояния однокомпонентной системы.
- •Адсорбция газов на поверхности твердого тела. Физическая и химическая адсорбция. Отличие физической адслрбции от химической.
- •Мономолекулярная адсорбция. Изотерма адсорбции Ленгмюра.
- •Адсорбционное равновесие. Условие достижения адсорбционного равновесия.
- •Предмет химической кинетики. Механизмы реакций
- •Скорость гомогенной химической реакции. Закон действия масс. Константа скорости реакции. Константа равновесия.
- •Молекулярность реакции. Частные и общий кинетические порядки химической реакции.
- •Скорость гетерогенной химической реакции. Стадии гетерогенного процесса. Лимитирующая стадия.
- •Температурная зависимость скорости химической реакции. Правило Вант-Гоффа. Уравнение Аррениуса. Энергия активации.
- •Влияние энергии излучения на химические реакции. Фотохимические реакции и законы фотохимии.
- •Типы растворов. Способы выражения концентрации растворов. Расчет молярной концентрации.
- •Нормальность и нормальная концентрация раствора, их определение и расчет. Эквивалент в-ва.
- •Титр и молярность раствора, мольная доля растворенного в-ва, их определение и расчеты.
- •Растворимость. Произведение растворимости.
- •Растворы неэлектролитов. Закон Рауля. Изменение температуры кипения и замерзания растворов.
- •Осмос. Осмотическое давление. Уравнение Вант-Гоффа для осмотического давления растворов неэлектролитов.
- •Растворы электролитов. Изотонический коэффициент. Степень диссоциации электролитов. Константа диссоциации. Слабые и сильные электролиты.
- •Электролитическая диссоциация и ионное произведение воды. Водородный показатель среды.
- •Влияние разбавленного слабого электролита на степень его диссоциации. З-н Оствальда разбавления электролита. Сильные электролиты.
- •Определение кислот и оснований с позиции теории Аррениуса их электролитической диссоциации.
- •Протонная теория кислот и оснований.
- •Электронная теория кислот и оснований. Апротонные(льюисовские) кислоты.
- •Коллоидные растворы. Строение коллоидных частиц и мицелл.
- •Молекулярно-кинетические, оптические и электрокинетические свойства коллоидных растворов.
- •Определение окислительно-восстановительных реакций. Степень окисления элементов в соединениях. Окислители и восстановители.
- •Электродные потенциалы. Устройство и принцип работы гальванического элемента Даниэля-Якоби.
- •Электродвижущая сила элемента.
- •Потенциалы металлических и газовых электродов. Уравнение Нернста.
- •Потенциалы водородного и кислородного электродов. Водородная шкала потенциалов.
- •Электролиз. Законы Фарадея.
- •Последовательность электродных процессов при электролизе. Применение электролиза.
- •Катализ. Гомогенный и гетерогенный катализ.
- •Определение и классификация коррозионных процессов.
- •Химическая коррозия. Термодинамика и кинетика химической коррозии.
- •Электрохимическая коррозия и ее механизм.
- •Термодинамика электрохимической коррозии. Условия возможности коррозии с кислородной и водородной деполяризацией.
- •Защита металлов от коррозии. Защитные покрытия. Легирование металлов.
- •Электрохимическая защита металлов.
Фазовые равновесия. Правило фаз Гиббса.
ФАЗОВОЕ РАВНОВЕСИЕ, сосуществование термодинамически равновесных фаз гетерогенной системы. Является одним из основных случаев термодинамического равновесия и включает в себя условия равенства т-ры всех частей системы (термич. равновесие), равенства давления во всем объеме системы (мех. равновесие) и равенство хим. потенциалов каждого компонента во всех фазах системы, что обеспечивает равновесное распределение компонентов между фазами. Число фаз f, находящихся одновременно в равновесии, связано с числом компонентов k, числом n независимых параметров, определяющих состояние системы (обычно, когда учитывается только влияние т-ры и давления, n = 2), и числом термодинамич. степеней свободы v ур-нием: v = k + 2 – f. В общем виде условие фазового равновесия, согласно принципу равновесия Гиббса, сводится к максимуму энтропии S системы при постоянстве внутр. энергии U, общего объема V и числа молей каждого компонента ni- Гиббса правило фаз, основной закон гетерогенных равновесий, согласно которому в гетерогенной (макроскопически неоднородной) физико-химической системе, находящейся в устойчивом термодинамическом равновесии, число фаз не может превышать числа компонентов, увеличенного на 2
Однокомпонентные системы. Диаграмма состояния однокомпонентной системы.
Для однокомпонентной системы (К=1) правило фаз записывается в виде С = 3-Ф .Если Ф = 1, то С =2 , говорят, что система бивариантна;Ф = 2, то С =1 , система моновариантна;Ф = 3, то С =0 , система нонвариантна. Соотношение между давлением (р), температурой (Т) и объемом (V) фазы можно представить трехмерной фазовой диаграммой. Каждая точка (ее называют фигуративной точкой) на такой диаграмме изображает некоторое равновесное состояние. Обычно удобнее работать с сечениями этой диаграммы плоскостью р - Т (при V=const) или плоскостью р -V (при T=const). Разберем более детально случай сечения плоскостью р - Т (при V=const).
Адсорбция газов на поверхности твердого тела. Физическая и химическая адсорбция. Отличие физической адслрбции от химической.
АДСОРБЦИЯ- изменение (обычно-повышение) концентрации в-ва вблизи пов-сти раздела фаз ("поглощение на пов-сти"). В общем случае причина адсорбции - нескомпенсированность межмол. сил вблизи этой пов-сти, т.е. наличие адсорбц. силового поля. Тело, создающее такое поле, наз. адсорбентом, в-во, молекулы к-рого могут адсорбироваться,-а д с о р б т и в о м, уже адсорбиров. в-во-адсорбатом. Процесс, обратный адсорбции, наз. десорбцией.
Природа адсорбц. сил м. б. весьма различной. Если это ван-дер-ваальсовы силы, то адсорбция наз. физической, если валентные (т.е. адсорбция сопровождается образованием поверхностных хим. соединений), - химической, или хемосорбцией. Отличит. черты хемосорбции - необратимость, высокие тепловые эффекты (сотни кДж/моль), активированный характер. Между физ. и хим. адсорбцией существует множество промежут. случаев (напр., адсорбция, обусловленная образованием водородных связей). Возможны также разл. типы физ. адсорбции наиб. универсально проявление дисперсионных межмол. сил притяжения, т. к. они приблизительно постоянны для адсорбентов с пов-стью любой хим. природы (т. наз. неспецифич. адсорбция). Физ. адсорбция может быть вызвана электростатич. силами (взаимод. между ионами, диполями или квадруполями); при этом адсорбция определяется хим. природой молекул адсорбтива (т. наз. специфич. адсорбция). Значит. роль при адсорбции играет также геометрия пов-сти раздела: в случае плоской пов-сти говорят об адсорбции на открытой пов-сти, в случае слабо или сильно искривленной пов-сти-об адсорбции в порах адсорбента.