
- •Модель строения атома по Резерфорду. Атомные спектры. Уравнение Ридберга. Соотношение Планка.
- •Модель Бора строения атома водорода. Постулаты Бора
- •Соотношение де Бройля. Корпускулярно-волновой дуализм. Волновая функция электрона. Атомная орбиталь.
- •Квантовые числа и их физический смысл. Электронное облако
- •Многоэлектронные атомы. Понятие уровня, подуровня. Принцип минимальной энергии. Принцип Паули, правило Гунда.
- •Периодическая система элементов. Строение атома. Порядок заполнения разрешенных состояний при переходе от элемента к элементу в периодах. Причина периодичности.
- •Порядок заполнения энергетических уровней в атомах. Правило Клечковского.
- •Энергетическое состояние электронов внешних уровней. Энергия ионизации. Сродство к электрону. Электроотрицательность. Размеры атомов и ионов.
- •Газообразное состояние вещества. Законы идеальных газов. Закон Авогадро. Уравнение состояния идеального газа. Реальные газы.
- •Жидкое состояние вещества. Свойства жидкостей. Жидкие кристаллы. Переохлажденные жидкости.
- •Сигма-,пи-,и дельта-связи.
- •Гибридизация атомных орбиталей. Пространственная конфигурация молекул.
- •Метод валентных связей. Валентность. Обменный механизм образования ковалентной связи.
- •Донорно-акцепторный механизм образования ковалентной связи.
- •Комплексные соединения. Структура комплексного соединения.
- •Межмолекулярные взаимодействия. Слабые и сильные взаимодействия.
- •Химическая связь в твердых телах. Металлические, ионные, атомно-ковалентные и молекулярные кристаллы.
- •Метод молекулярных орбиталей. Связывающая и разрыхляющая молекулярные орбитали.
- •Ионная связь. Степень ионности связи.
- •Слабые межмолекулярные взаимодействия. Силы Ван Дер Ваальса.
- •Сильные межмолекулярные взаимодействия. Водородная и ковалентная связи.
- •Вопросы изучаемые химической термодинамикой. Система и окружающая среда. Внутренняя энергия, теплота, работа.
- •Первый закон термодинамики. Энтальпия системы.
- •Тепловой эффект химической реакции. Независимость теплового эффекта реакции от пути процесса. Закон Гесса.
- •Стандартное состояние. Теплота образования. Расчет тепловых эффектов по теплотам образования.
- •Теплоёмкость системы. Изобарная и изохорная теплоёмкости. Уравнение Кирхгофа.
- •Самопроизвольные и несамопроизвольные процессы. Энтропия. Третий закон термодинамики. Постклат Планка. Абсолютная энтрапия.
- •Второй закон термодинамики для изолированных систем.
- •Статическая трактовка энтропии. Уравнение Больцмана.
- •Термодинамический потенциал (энергия) Гиббса. Направление и предел протекания самопроизвольных процессов. Состояние равновесия.
- •Химическое равновесие. Смещение химического равновесия. Принцип Ле-Шателье.
- •Фазовые равновесия. Правило фаз Гиббса.
- •Однокомпонентные системы. Диаграмма состояния однокомпонентной системы.
- •Адсорбция газов на поверхности твердого тела. Физическая и химическая адсорбция. Отличие физической адслрбции от химической.
- •Мономолекулярная адсорбция. Изотерма адсорбции Ленгмюра.
- •Адсорбционное равновесие. Условие достижения адсорбционного равновесия.
- •Предмет химической кинетики. Механизмы реакций
- •Скорость гомогенной химической реакции. Закон действия масс. Константа скорости реакции. Константа равновесия.
- •Молекулярность реакции. Частные и общий кинетические порядки химической реакции.
- •Скорость гетерогенной химической реакции. Стадии гетерогенного процесса. Лимитирующая стадия.
- •Температурная зависимость скорости химической реакции. Правило Вант-Гоффа. Уравнение Аррениуса. Энергия активации.
- •Влияние энергии излучения на химические реакции. Фотохимические реакции и законы фотохимии.
- •Типы растворов. Способы выражения концентрации растворов. Расчет молярной концентрации.
- •Нормальность и нормальная концентрация раствора, их определение и расчет. Эквивалент в-ва.
- •Титр и молярность раствора, мольная доля растворенного в-ва, их определение и расчеты.
- •Растворимость. Произведение растворимости.
- •Растворы неэлектролитов. Закон Рауля. Изменение температуры кипения и замерзания растворов.
- •Осмос. Осмотическое давление. Уравнение Вант-Гоффа для осмотического давления растворов неэлектролитов.
- •Растворы электролитов. Изотонический коэффициент. Степень диссоциации электролитов. Константа диссоциации. Слабые и сильные электролиты.
- •Электролитическая диссоциация и ионное произведение воды. Водородный показатель среды.
- •Влияние разбавленного слабого электролита на степень его диссоциации. З-н Оствальда разбавления электролита. Сильные электролиты.
- •Определение кислот и оснований с позиции теории Аррениуса их электролитической диссоциации.
- •Протонная теория кислот и оснований.
- •Электронная теория кислот и оснований. Апротонные(льюисовские) кислоты.
- •Коллоидные растворы. Строение коллоидных частиц и мицелл.
- •Молекулярно-кинетические, оптические и электрокинетические свойства коллоидных растворов.
- •Определение окислительно-восстановительных реакций. Степень окисления элементов в соединениях. Окислители и восстановители.
- •Электродные потенциалы. Устройство и принцип работы гальванического элемента Даниэля-Якоби.
- •Электродвижущая сила элемента.
- •Потенциалы металлических и газовых электродов. Уравнение Нернста.
- •Потенциалы водородного и кислородного электродов. Водородная шкала потенциалов.
- •Электролиз. Законы Фарадея.
- •Последовательность электродных процессов при электролизе. Применение электролиза.
- •Катализ. Гомогенный и гетерогенный катализ.
- •Определение и классификация коррозионных процессов.
- •Химическая коррозия. Термодинамика и кинетика химической коррозии.
- •Электрохимическая коррозия и ее механизм.
- •Термодинамика электрохимической коррозии. Условия возможности коррозии с кислородной и водородной деполяризацией.
- •Защита металлов от коррозии. Защитные покрытия. Легирование металлов.
- •Электрохимическая защита металлов.
Модель строения атома по Резерфорду. Атомные спектры. Уравнение Ридберга. Соотношение Планка.
В 1911 году Эрнест Резерфорд, проделав ряд экспериментов, пришёл к выводу, что атом представляет собой подобие планетной системы, в которой электроны движутся по орбитам вокруг расположенного в центре атома тяжёлого положительно заряженного ядра («модель атома Резерфорда»). Однако такое описание атома вошло в противоречие с классической электродинамикой. Дело в том, что, согласно классической электродинамике, электрон при движении с центростремительным ускорением должен излучать электромагнитные волны, а, следовательно, терять энергию. При нагреве вещество испускает излучение. Если излучение имеет одну длину волны, то она называется монохроматическим. В большинстве же случаев излучение характеризуется несколькими длинами волн. При разложении излучения на монохроматические компоненты получается спектр излучения, где отдельные его составляющие выражаются спектральными линиями. Спектры получающиеся при излучении свободными или слабо связанными атомами называются атомными спектрами. Длинны волн соответствующие атомному спектру определяются уравнением Бальмера. В 1910 году Планк высказал что вещества поглощают и испускают энергию дискретными порциями называемыми квантами. Энергия кванта пропорциональна частоте излучения. Постоянная Ридберга — величина, введённая Ридбергом, входящая в уравнение для уровней энергии и спектральных линий. Постоянная Ридберга обозначается как R. Эта постоянная была введена Йоханнесом Робертом Ридбергом в 1890 при изучении спектров излучения атомов. Если считать массу ядра атома бесконечно большой по сравнению с массой электрона (то есть считать, что ядро неподвижно), то постоянная Ридберга будет определяться как
(система
СГС), где m и e — масса и заряд электрона,
c — скорость света, а — постоянная
Дирака или приведённая постоянная
Планка R = 109737,316 см-1. При учёте движения
ядра масса электрона заменяется
приведённой массой электрона и ядра и
тогда
,
где Mi — масса ядра атома.
Модель Бора строения атома водорода. Постулаты Бора
В 1910 Бор предложил модель строения атома водорода согласно которой электроны двигаются вокруг ядра не по любым, а лишь по разрешенным орбитам, на которых электрон обладает определенными энергиями. При переходе электрона с одной орбиты на другую атом поглощает или испускает энергию в виде кванта. Каждая орбита имеет номер который назвали главным квантовым числом. Атом водорода обладает минимальной энергией когда электрон находится на первой орбите. Такое состояние называется основным. Первый постулат Бора (постулат стационарных состояний) В атоме существуют некоторые стационарные состояния, не изменяющиеся во времени без внешних воздействий. В этих состояниях атом не излучает электромагнитных волн Второй постулат Бора (правило частот)при переходе атома из одного стационарного состояния в другое им испускается или поглощается один квант энергии. Используя данные постулаты и законы классической механики, Бор предложил модель атома, ныне именуемую Боровской моделью атома.