
- •7. Классификация компьютеров
- •8. Первое поколение эвм.
- •9. Структурная схема эвм. Поколения эвм
- •10. Функциональная организация эвм
- •12. Аппаратное обеспечение современного компьютера
- •Устройство центрального процессора
- •Параметры процессора, влияющие на производительность
- •Шина данных
- •Шина адреса памяти
- •Внутренние регистры
- •Тактовая частота
- •Почему процессоры перегреваются и как это предотвратить
- •Алгоритм работы современного процессора
- •18. Общая схема построения компьютера
- •20. Общие принципы работы операционных систем
- •21. Архитектура микропроцессора Основные характеристики микропроцессора
- •22. Накопители на жестких магнитных дисках — устройство и основные низкоуровневые характеристики
- •24. Основные характеристики средств воспроизведения и отображения информации
- •25. Классификация периферийных устройств
- •36. Базовая модель взаимодействия открытых систем (osi).
- •38. Классификация сетей по области действия
- •39. Классификация компьютерных сетей
- •40. Одноранговые сети
- •41. Компьютерные сети и принципы их организации
- •48. Классификация сетевых операционных систем
- •49. Среды передачи данных
- •53.Структурированные кабельные системы
18. Общая схема построения компьютера
Любой компьютер построен на общих принципах, которые позволяют выделить следующие главные устройства:
— память (запоминающее устройство, ЗУ), состоящую из перенумерованных ячеек;
— процессор, включающий в себя устройство управления (У У) и арифметико-логическое устройство (АЛУ);
— устройства ввода;
— устройство вывода.
Эти устройства соединены каналами связи, по которым передается информация.
В основу построения подавляющего большинства компьютеров положены следующие общие принципы, которые сформулировал в 1945 г. Джон фон Нейман.
Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности. Процессор исполняет программу автоматически, без вмешательства человека.
Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами в памяти можно выполнять такие же действия, как и над данными. Таким образом, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции — перевода текста программы с языка программирования высокого уровня на язык конкретной машины.
Принцип адресности. Структурно основная память состоит из пронумерованных ячеек, процессору в произвольный момент времени доступна любая ячейка.
Компьютеры, построенные на этих принципах, относятся к типу фон-неймановских.
19. Назначение и функционирование шин
• Основой системной платы являются различные шины, служащие для передачи сигналов компонентам системы. Шина (bus) представляет собой общий канал связи, используемый в компьютере и позволяющий соединить два или более системных компонента. Существует определенная иерархия шин PC, которая выражается в том, что каждая более медленная шина соединена с более быстрой. Современные компьютерные системы включают три, четыре или более шин. Каждое системное устройство соединено с какой-либо шиной, причем определенные устройства (чаще всего это наборы микросхем) выполняют роль моста между шинами. • Шина процессора. Эта высокоскоростная шина является ядром набора микросхем и системной платы. Используется в основном процессором для передачи данных между кэш-памятью или основной памятью и компонентом North Bridge набора микросхем. В системах на базе процессоров Pentium II эта шина работает на частоте 66, 100, 133 или 200 МГц и имеет ширину 64 разряда. • Шина AGP. Эта 32-разрядная шина работает на частоте 66 (AGP 1х), 133 (AGP 2х) или 266 МГц (AGP 4х) и предназначена для подключения видеоадаптера. Она подключается к компоненту North Bridge или Memory Controller Hub (MCH) набора микросхем системной логики. • Шина PCI. Эта 32-разрядная шина работает на частоте 33 МГц; используется начиная с систем на базе процессоров 486. В настоящее время есть реализация этой шины с частотой 66 МГц. Находится под управлением контроллера PCI — части компонента North Bridge или Memory Controller Hub (MCH) набора микросхем. На системной плате устанавливаются разъемы, обычно четыре или более, в которые можно подключать сетевые, SCSI- и видеоадаптеры, а также другое оборудование, поддерживающее этот интерфейс. К шине PCI подключается компонент South Bridge набора микросхем, который содержит реализации интерфейса IDE и USB. • Шина ISA. Это 16-разрядная шина, работающая на частоте 8 МГц; впервые стала использоваться в системах AT в 1984 году (была 8-разрядной и работала на частоте 5 МГц). Имела широкое распространение до настоящего времени, но из спецификации PC99 исключена. Реализуется с помощью компонента South Bridge. Чаще всего к этой шине подключается микросхема Super I/O. • Некоторые современные системные платы содержат специальный разъем, получивший название Audio Modem Riser (AMR) или Communications and Networking Riser (CNR). Подобные специализированные разъемы предназначены для плат расширения, обеспечивающих выполнение сетевых и коммуникационных функций. Следует заметить, что эти разъемы не являются универсальным интерфейсом шины, поэтому лишь немногие из специализированных плат AMR или CNR присутствуют на открытом рынке. Как правило, такие платы прилагаются к какой-либо определенной системной плате. Их конструкция позволяет легко создавать как стандартные, так и расширенные системные платы, без необходимости резервировать место на платах для установки дополнительных микросхем. Большинство системных плат, обеспечивающих стандартные сетевые функции и функции работы с модемом, созданы на основе шины PCI, так как разъемы AMR/CNR имеют специализированное назначение. • В современных системных платах существуют также скрытые шины, которые никак не проявляются в виде гнезд или разъемов. Имеются в виду шины, предназначенные для соединения компонентов наборов микросхем, например hub-интерфейса и шины LPC. -интерфейс представляет собой четырехтактную (4x) 8-разрядная шину с рабочей частотой 66 МГц, которая используется для обмена данными между компонентами MCH и ICH набора микросхем (hub-архитектура). Пропускная способность hub-интерфейса достигает 266 Мбайт/с, что позволяет использовать его для соединения компонентов набора микросхем в недорогих конструкциях. • Для подобных целей предназначена и шина LPC, которая представляет собой 4-разрядную шину с максимальной пропускной способностью 6,67 Мбайт/с и применяется в качестве более экономичного по сравнению с шиной ISA варианта. Обычно шина LPC используется для соединения Super I/O или компонентов ROM BIOS системной платы с основным набором микросхем. Шина LPC имеет примерно равную рабочую частоту, но использует значительно меньше контактов. Это позволяет полностью отказаться от использования шины ISA в системных платах.