
- •1.1. Утилизация золо- и шлаковых отходов
- •1 .2. Утилизация отходов процессов газификации топлив
- •Утилизация твердых отходов черной и цветной металлургии
- •2.1. Отходы черной металлургии
- •2.1.1. Технология и оборудование для подготовки металлолома к переплаву
- •2.2. Отходы цветной металлургии
- •2.2.2. Источники образования лома и отходов цветных металлов
- •2.2.4. Основные направления использования лома и отходов цветных металлов
- •2.2.6. Металлургическая переработка лома и отходов
- •Технико-экономические показатели работы двухкамерной отражательной печи емкостью 18 т
- •Переработка свинецсодержащих отходов
- •Утилизация твердых отходов химической промышленности
- •3.1. Утилизация отходов сернокислотного производства
- •3.2. Утилизация отходов производств минеральных удобрений
- •3.2.1. Утилизация отходов производств фосфорных удобрений
- •3.2.2. Утилизация отходов производств калийных удобрений
- •3.3. Утилизация отходов производства соды и содопродуктов
- •3.4. Утилизация отходов полимеров
- •3.4.1. Особенности переработки отходов термопластов
- •3.4.2. Особенности переработки отходов реактопластов
- •3.4.3. Деструктивные методы утилизации полимеров
- •4.1. Утилизация кислых гудронов и нефтешламов
- •4.2. Утилизация резиносодержащих отходов
- •4.2.1. Изготовление и применение резиновой крошки
- •4.2.2. Производство регенерата
- •4.2.3. Термические методы утилизации резиновых отходов
- •4.3. Утилизация отработанных нефтепродуктов
- •4.3.1. Источники и классификация нефтесодержащих отходов
- •4.3.2. Обезвоживание нефтесодержащих отходов
- •4,3,3. Сжигание нефтеотходов
- •4.3,4. Химическое обезвреживание нефтесодержащих отходов
- •4.3.5. Биохимическая переработка нефтесодержащих отходов
- •4.3.6. Регенерация отработанных минеральных масел
- •4.3.7. Утилизация смазочно-охлаждающих жидкостей
- •Утилизация отходов горнодобывающей промышленности
- •5.1. Утилизация отходов углеобогащения
- •5.2. Утилизация сопутствующих пород
- •6.1. Образование, классификация и использование отходов древесины
- •6.2. Переработка кусковых
- •6.3. Производство строительных и конструкционных материалов из отходов древесины
- •6.2. Переработка кусковых
- •6.3. Производство строительных и конструкционных материалов из отходов древесины
- •6.4. Утилизация древесных опилок
- •6.5. Химическая переработка отходов растительного сырья
- •6.5.1. Целлюлозно-бумажное производство
- •6.5.2. Гидролизное производство
- •6.5.3. Производство удобрений
- •6.6. Термическая переработка отходов растительного сырья
- •6.6.1. Пиролиз
- •6.6.2. Производство активных углей
- •6.7. Другие направления использования и переработки отходов растительного сырья
- •6.8. Утилизация отходов макулатуры
- •6.8.1. Нормативы образования и сбора макулатуры
- •6.8.2. Дезагрегация макулатуры
- •6,8.3. Очистка макулатурной массы
- •6,8.4. Роспуск агрегированных волокон
- •6.8.5. Сортировка волокнистой массы
- •6.8.6. Облагораживание целлюлозной массы
- •7.1. Образование и классификация текстильных отходов
- •7.2. Первичная обработка и разволокнение текстильных отходов
- •7.3. Производство пряжи
- •7.4. Производство нетканых материалов из вторичных волокон
- •Утилизация осадков сточных вод канализационных систем
- •8.1. Утилизация осадков промышленной канализации
- •6Vp.T чняцигтрпклыу гапнтяпкниу за-
- •8.2. Утилизация осадков сточных вод городских канализаций
- •8.2.1. Тепловая обработка осадков
- •Техническая характеристика камеры дегельминтизации модернизированной (кдгм)
- •8.2.2. Установки для сжигания осадков
- •Техническая характеристика лечи кс (экспериментальный проект Союзводоканалпроекта)
- •Многоподовой печи (экспериментальный проект Союзводоканалпроекта)
- •Техническая характеристика барабанной печи
- •9.1. Мусороперерабатывающие заводы
- •9.2. Термические методы утилизации тбо
- •9.2.1. Методы утилизации тбо при температурах ниже температуры плавления шлака
- •9.2.2. Методы переработки тбо при температурах выше температуры плавления шлака
- •9.5. Комплексная переработка тбо
9.2. Термические методы утилизации тбо
Термическую переработку и утилизацию ТБО можно производить методами слоевого сжигания исходных (неподготовленных) отходов в мусоросжигательных котлоагрегатах (МСК); слоевого или камерного сжигания специально подготовленных отходов (освобожденных от балластных фракций) совместно с природным топливом в энергетических котлах или в цементных печах; пиролизом отходов, прошедших Предварительную подготовку или не подвергшихся таковой.
В зависимости от температуры процесса все методы термической переработки ТБО, нашедшие промышленное применение или прошедшие опытную апробацию, можно разделить на две большие группы: процессы переработки при температурах ниже температуры плавления шлака и процессы переработки при температурах выше температуры плавления шлака. В свою очередь, по принципиальному характеру процесса каждую из этих групп подразделяют на три подгруппы, которые классифицируют по процессам переработки отходов (табл. 9.9).
Основными факторами, влияющими на выбор термической технологии, являются допустимая производительность оборудования, капитальные и эксплуатационные затраты, надежность и эффективность работы, возможность автоматизации и уменьшения выбросов загрязняющих веществ в окружающую среду.
9.2.1. Методы утилизации тбо при температурах ниже температуры плавления шлака
Термические методы переработки ТБО при температурах ниже температуры плавления шлака, то есть при температурах менее 1300 °С, применяют наиболее часто. Наиболее распространенные в практике процессы - слоевое сжигание и сжигание в кипящем слое - требуют принудительного перемешивания и перемещения материала. Находящийся в стадии разработки весьма перспективный процесс сжигания-газификации отходов в плотном слое реализуется без принудительного перемешивания и перемещения материала.
Таблица 9.9
Классификация методов термической переработки
Температурный уровень процесса |
Принципиальный характер процесса |
Процесс переработки |
1. Термические процессы при температурах ниже температуры плавления шлака |
1. Слоевое сжигание с принудительным перемешиванием материала |
- на переталкивающих решетках - на валковых решетках - во вращающихся барабанных печах |
2. Сжигание в кипящем слое |
- в стационарном кипящем слое - в вихревом кипящем слое - в циркулирующем кипящем слое |
|
3. Сжигание-газификация в плотном слое кускового материала без принудительного перемешивания и перемещения материала |
Паровоздушная газификация (процесс института химической физики РАН в Черноголовке) |
|
2. Термические процессы при температурах выше температуры плавления шлака |
1. Сжигание в слое шлакового расплава |
- с использованием обогащенного кислородом дутья (процесс Ванюкова) - с использованием в качестве дутья природного газа (фьюминг-нроцесс) - с использованием элсктрошлакового расплава |
2. Сжигание в плотном слое кускового материала и шлаковом расплаве без принудительного перемешивания и перемещения материала |
Доменный процесс (с использованием подогретого до 100 °С воздуха) |
|
3. Комбинированные процессы |
- процесс «Simiens» (пиролиз-сжигание пирогаза и отсепарированного углеродного остатка с использованием необогащен-ного дутья) - процесс «Nocll» (пиролиз-газификация: получение синтез-газа при совместной термообработке пирогаза, отсепарированного от металлов углеродистого остатка и минеральных компонентов с использованием обогащенного кислородом дутья) - процесс «Thcrmoselect» (пиролиз-газификация: получение синтез-газа при совместной термообработке пирогаза, углеродистого остатка и минер&чьной фракции с использованием обогащенного кислородом дутья) |
Слоевое сжигание неподготовленных ТБО в топках мусоросжигательных котлоагрегатов. При таком способе обезвреживания сжиганию подвергают все поступающие на завод отходы без какой-либо их предварительной подготовки или обработки.
Метод слоевого сжигания является наиболее распространенным и изученным. Он позволяет значительно экономить земельные площади по сравнению с таковыми, отводимыми под полигоны. При этом методе помимо целей обезвреживания отходов
возможно получение тепловой и электрической энергии, сокращение до минимума расстояния между местом сбора ТБО и мусоросжигательным заводом (МСЗ). Однако наряду с этими положительными показателями, сжигание отходов сопровождается образованием дымов, содержащих различные загрязняющие атмосферу вещества. В этой связи все современные МСЗ оборудованы высокоэффективными устройствами для очистки отходящих газов (дымов) от твердых и газообразных загрязняющих веществ со стоимостью, достигающей 30 % общих капзатрат на строительство МСЗ. За рубежом в ряде стран, где лимит земельных площадей представляет особо острую проблему, му-соросжигание нашло самое широкое распространение.
Изучение процесса горения ТБО в мусоросжигательных котлоагрега-тах показало, что он протекает в две стадии: в твердой фазе (на колосниковой решетке) и в объеме топочного пространства. Колосниковая решетка является одним из важнейших элементов мусоросжигающей камеры (МСК). Наряду с механизацией процесса сжигания большое значение имеет шурующая способность колосниковой решетки, которая обеспечивает расшлаковку спекающихся частей слоя горящих отходов и их аэрацию. К колосниковым решеткам МСК предъявляются требования надежной работы при загрузке неподготовленными отходами с постоянно меняющимся морфологическим и фракционным составами; возможности эксплуатации при температуре в топочном объеме выше 800 °С, приводящей к тепловой деструкции наиболее трудно раз-
лагаемых и горящих компонентов отходов, минимального содержания органических составляющих (недожога) в остатках сжигания и стерильности их после сжигания; обеспечения максимально возможного КПД топки, чтобы требуемая температура в ней достигалась без сжигания дополнительного топлива и обеспечивалась высокая эффективность всего агрегата (если на установке тепло уходящих газов утилизируется); поступления минимального количества летучей золы в уходящие дымовые газы; нечувствительности к легкоплавким металлическим составляющим (олово консервных банок, отходы из алюминия и т.п.); эффективности сушки отходов в первой зоне решетки; разделения топочного процесса на отдельные зоны (сушки, воспламенения, горения и дожигания) при необязательном конструктивном разделении колосниковой решетки на эти функциональные участки; исключения ручного труда (подача отходов в топку, шуровка, золоудаление и т.п).
Для реализации перечисленных требований имеется несколько видов колосниковых решеток. Конкурентоспособными являются три типа решеток: поступательно переталкивающие, обратно переталкивающие и решетки валкового типа.
Переталкивающие решетки как с прямой, так и с обратной подачей материала представляют собой системы, состоящие из подвижных и неподвижных колосников для перемещения и перемешивания отходов. Колосниковые решетки с прямой подачей (поступательно-переталкивающие решетки) имеют малый угол наклона (6-12,5°) и переталкивают
материал в сторону выгрузки шлака (в направлении перемещения материала).
Колосниковые решетки с обратной подачей (обратно-переталкиваю-щие решетки) имеют большой угол наклона (обычно 21-25°) и переталкивают материал (нижний слой отходов) в сторону, противоположную выгрузке шлака и перемещению отходов. При этом часть горящего слоя отходов возвращается к началу решетки, что интенсифицирует процесс горения.
Принципиальные схемы колосниковых решеток приведены на рис. 9.4.
Переталкивающие колосниковые решетки обеспечивают движение ТБО вдоль решеток. На этой системе удается получить хороший эффект шуровки при интенсивном переворачивании отдельных частиц отходов, что предотвращает кратерное горение, несмотря на неоднородность отдельных фракций (различная интенсивность горения отдельных фракций). В результате перемешивания быстро и медленно горящих частей отходов достигается сравнительно равномерное их выгорание. Этот эффект еще больше повышается путем установки последовательно нескольких ступеней наклонно переталкивающих решеток - каскада (рис. 9.4, а). Однако наряду с интенсификацией процесса сжигания отходов при их падении с одной решетки на другую возрастает вынос твердых частиц, что приводит к увеличению уноса из топки, следовательно, требует более эффективной системы газоочистки.
Другим примером конструкции топки с шурующим эффектом явля-
ется обратно переталкивающая колосниковая решетка (рис. 9.4, г), на которой сжигание происходит более интенсивно, чем на обычной переталкивающей решетке. Большая эффективность достигается за счет нижнего воспламенения отходов. Полотно колосниковой решетки имеет наклон в сторону выгрузки шлака, и отходы под действием силы тяжести сползают по ней вниз. Решетка состоит из поочередно расположенных неподвижных и подвижных ступеней колосников. Движение подвижных ступеней происходит навстречу сползающему слою отходов, и горящие части отходов, попадая под слой отходов, создают очаги нижнего зажигания.
На установках малой и средней производительности применяют системы с опрокидывающими колосниками (рис. 9.4, б). Выполненные в виде сегментов колосники решетки объединены в группы, каждый второй ряд периодически опрокидывает горящие отходы, что создает весьма эффективную шуровку. Использование этой системы особенно оправдано при сжигании целлюлозо-содержащих отходов (бумага, древесина и т.д.). Подобная система создана в США (система Никольс), где содержание целлюлозосодержа-щих отходов в ТБО особенно велико.
К недостаткам перечисленных конструкций (переталкивающих, обратно переталкивающих, с опрокидывающими колосниками) относят сложность их кинематических схем, а также работу колосников в условиях высоких температур, что требует изготовления их из высоколегированных сталей или чугуна.
К колосниковым решеткам с шурующим эффектом относятся также несколько последовательно включенных ступеней решеток, расположенных в виде каскада. Успешная шуровка обеспечивается при падении материала с одной ступени на другую или при перемещении с одного валка на другой.
Одним из вариантов каскадных колосниковых решеток является система цепных механических колосниковых решеток (рис. 9.4). Слой материала, находящийся на полотне решетки, с постоянной скоростью перемещается через топочное пространство. Отходы, имеющие разные свойства, сгорают неравномерно, создавая кратерное горение. Дутьевой воздух проходит через такие кратеры в больших количествах, в связи с чем
на других участках полотна решетки, покрытых несгоревшими отходами, не хватает окислителя. Это является основным недостатком системы из двух цепных решеток (наклонной и горизонтальной), а в странах Западной Европы - из 3-4 решеток (каскад). При пересыпании отходов с решетки на решетку слой отходов выравнивается. Однако каскадное расположение решеток при падении отходов с решетки на решетку приводит к повышенному пылению сжигаемых материалов, что увеличивает содержание твердых частиц (золы, недожога) в дымовых газах.
На валковых колосниковых решетках отходы перемещаются за счет вращения отдельных валков, и в момент перехода их с одного валка на другой происходит шуровка отходов (рис. 9.4в).
Колосниковые решетки устанавливают в топках, стенки которых экранированы испарительными поверхностями - вертикальными рядами труб, по которым циркулируют вода и пар (вода в трубах закипает, когда их обтекают восходящие горячие газы). Ряды труб в определенной степени являются дополнительным изоляционным слоем (наряду с шамотом), что оптимизирует рекуперацию тепла и несколько упрощает запуск оборудования после остановки. Камеру сжигания и нижнюю часть первого хода котла обмуровывают набивной массой.
Сопла подачи вторичного воздуха располагают у выхода из камеры сжигания. Интенсивной подачей через них воздуха обеспечивают качественное его перемешивание с топочными (дымовыми) газами и тем самым хорошее выгорание вредных газообразных веществ.
В газоходах котлоагрегата последовательно устанавливают состоящий из стальных труб пароперегреватель (элемент парового котла, повышающий температуру пара сверх температуры насыщения) и экономайзер (теплообменник) для предварительного подогрева, питающей котел воды за счет тепла выходящих газов. В зависимости от конкретных условий проектируют котлоагрегаты (бойлеры) горизонтального или вертикального типа. Последние более компактны и занимают меньшую площадь. Поверхности конвективного нагрева располагают либо в вертикальном ходе дымовых газов (в этом случае для очистки горизонтально расположенных в нем пучков труб устанавливают обдувочные аппараты, что приводит к увеличению объема отходящих газов), либо в горизонтальном ходе (свободно висящие пучки
труб очищают с помощью ударного механизма).
На ряде МСЗ часть первичного дутьевого воздуха подают под колосниковую решетку, другую - сверху на слой ТБО. В зависимости от теплоты сгорания и длины пламени производится перераспределение воздушных потоков: при низкой теплоте сгорания отходов пламя растягивается по длине колосниковой решетки и значительная часть первичного дутья подается в середине и конце последней. Расход воздуха на первичное дутье составляет 60-70 % от его общего расхода. Вторичное дутье ведут, как указано выше, через сопла у входа в первую тягу котла. Взамен вторичного воздуха возможна подача очищенных от взвешенных и имеющих температуру около 200 °С дымовых газов (особенно при сжигании высококалорийных отходов). Использование отработанных дымовых газов снижает содержание кислорода без превышения концентрации СО и уменьшает количество отходящих газов, подлежащих очистке.
Гибкая система подачи дутьевого воздуха (и частичная рециркуляция дымовых газов) предохраняет стенки топки от перегрева и автоматически перестраивается под качество сжигаемого материала. Автоматическая система регулирования обеспечивает поддержание на заданном уровне количества производимого пара и высоты пламени по всему сечению колосниковой решетки (факел контролируют при помощи малоинерционных оптических датчиков).
В топках с обратно переталкивающими решетками (например, системы фирмы «Martin») по длине решетка разделяется на 3-6 секции для
подачи дутьевого воздуха. Первичный воздух подают в топку через узкие щели в головной части колосников. Вторичное дутье осуществляют через переднюю и заднюю стенки топки, причем воздух подают в пространство над слоем горящих отходов. После ввода вторичного воздуха отходящие газы, сжигаемые при температуре 1000-1200 °С, остаются в печи более 2 секунд при температуре 850 °С, что достаточно для разрушения органических соединений (в том числе опасных) до безвредных и нейтральных.
Горение отходов начинается в начале решетки и стабилизируется при 1000 °С во второй ее половине. В конце решетки расположен медленно вращающийся вал, регулирующий высоту слоя сжигаемых отходов и транспортирующий шлак в шлаковую ванну.
Угол наклона обратно-переталкивающей решетки является достаточно большим и составляет около 25е в сторону перемещения материала и разгрузки шлака. Каждая секция решетки, приводимая в движение от одного гидроцилиндра, состоит из чередующихся слоев подвижных и неподвижных колосников, изготовленных из жаропрочной хромистой стали, состав которой разработан фирмой «Martin». Боковые поверхности колосников отшлифованы и с помощью специального устройства прижимаются друг к другу, образуя монолитное полотно (узкие щели для подачи первичного воздуха предусмотрены в головной части как подвижных, так и неподвижных колосников). Подвижные колосники оказывают на перемещающийся в сторону разгрузки шлака материал обратно переталкивающее действие, что позволяет подавать 15-20 % горящей массы от-
ходов навстречу движущемуся слою, создавая очаги нижнего зажигания. Срок службы колосников - 5-6 лет.
Слоевое сжигание ТБО в топке с наклонно переталкивающей решеткой. На рис. 9.5 представлена принципиальная схема завода, на котором реализовано слоевое сжигание ТБО в топке с наклонно переталкивающей решеткой.
Как видно из рисунка, исходные ТБО доставляют мусоровозами в приемное отделение и загружают в углубленный бункер прямоугольного сечения, обслуживаемый грейферным краном (обычно устанавливают два крана). Назначение грейферного крана - подача отходов из бункера на сжигание, удаление так называемых негабаритов (холодильники, матрацы и т.п.) и усреднение отходов (последнее крайне неэффективно, так как исходные ТБО по своему составу и свойствам мало пригодны для усреднения).
На рис. 9.6 представлен общий вид завода, на котором реализовано слоевое сжигание ТБО в топке с валковой решеткой. Основными недостатками работы таких заводов являются низкая эффективность и отрицательное экологическое влияние (процесс сжигания плохо стабилизируется, оптимальная температура зачастую не достигается, велик выход недожога, низкое качество и шлака, значительные потери черных металлов, эксплуатационные осложнения при попадании в печь бордюрного камня и больших количеств металла, сложность организации эффективной газоочистки при нестабильном горении отходов и др.). Эти недостатки особенно проявляются при отсутствии раздельного сбора и рациональной технологии вывоза ТБО, что имеет место в нашей стране. Как видно из
рис. 9.6, в традиционной топке с валковой решеткой реализован центральный отвод дымовых газов из топочного пространства. При этом, по дан-
ным практики, температура над последним валком составляет всего 500- 600 °С, что предопределяет повышенное содержание в шлаке недожога.
В настоящее время создана топка с валковой решеткой второго поколения (рис. 9.7). Новая геометрия топочного пространства и дутьевой режим обеспечивают стабилизацию горения, увеличение времени пребывания газов в печи, турбулизацию газового потока и его интенсивное перемешивание с воздухом. Все это позволяет реализовать сжигание ТБО в оптимальных условиях.
В новой конструкции печи под сводом топочного пространства образуются вихревые потоки, увеличивающие продолжительность пребыва-
ния газов в топке при высокой температуре и степень выгорания вредных газовых компонентов и твердых частиц. Первичное дутье (возможен подогрев первичного воздуха до 220 °С) подают, как обычно, снизу. Вторичное дутье подают сверху под свод топочного пространства в основную зону горения, что приводит к снижению образования оксидов азота на 50 %; подача дутья для дожигания газов на выходе из топки не требуется. Геометрия печи обеспечивает также высокую температуру шлака до его выпуска (температура над после-
дним валком решетки составляет 1000 °С). Суммарный расход дутьевого воздуха заметно снижен. Оптимальное управление процессом, связанное с автоматическим регулировани-
ем воздухораспределения, скорости вращения валков и количества подаваемого материала, позволяет достаточно эффективно сжигать отходы переменного состава.
Сжигание в барабанных вращающихся печах. Барабанные вращающиеся печи для сжигания исходных (неподготовленных) ТБО применяют очень редко, чаще эти печи используют для сжигания специфичных (например, больничных) отходов, а также жидких и пастообразных промышленных отходов, обладающих абразивным действием.
На рис. 9.8 представлен общий вид завода, на котором реализовано слоевое сжигание отходов в барабанной вращающейся печи.
Барабанные печи устанавливают с небольшим наклоном в направлении движения отходов. Скорость вращения печи - от 0,05 до 2 об./мин. Со стороны загрузки подают отходы, воздух и топливо, шлак и золу выгружают с противоположного конца печи. В первой части печи отходы подсушиваются (400 °С), далее происхо-
дят их газификация и сжигание (обычно при 900-1000 °С).
При сжигании отходов в барабанных печах в принципе можно достичь и более высоких температур горения, но высокотемпературное сжигание ТБО приводит к быстрому износу достаточно тонкой футеровки в печах этого типа (раз в полгода требуется замена внутренней футеровки печи - операция трудоемкая, сложная и дорогая, ее стоимость составляет около 10 % стоимости самой печи). Для повышения долговечности печи иногда вместо футеровки применяют водяное охлаждение стенки барабана или устраивают охлаждение футеровки печи. Производительность барабанных печей составляет до 10 т/час (чаще 1-5 т/час).
Барабанные печи используют в технологии «Пироксэл», реализующей трехстадийную термическую об-
работку отходов: сушку до содержания влаги 20 %; сжигание (либо пи-ролиз+сжигание) при температуре 900 °С и электрошлаковую обработку остатков сжигания при 1400-1500 °С. Данная технология, названная пиро-лизно-металлургической переработкой, прошла достаточно длительные испытания на крупномасштабной опытной установке. Согласно одному из вариантов этой технологии ее первые две стадии осуществляют во вращающихся барабанах (рис. 9.9). В зону сушки подают горячие дымовые газы после их рсагентной очистки, а в зону горения - подогретый до 400 °С дутьевой воздух. Образующийся шлак и дымовые газы поступают в электроплавильную печь.
Существенными недостатками данной технологии являются практически полная потеря металлов (выделяемый в ванне электропечи в виде донной фазы металлосодержащий продукт неизвестного состава получают после периодического слива струи расплава на поверхность вращающегося барабана в форме тонкого скрапа, не имеет сколь-либо значительных рынков сбыта), повышенный переход в газовую фазу при 1500 °С опасных металлов (цинка, кадмия, ртути, свинца, олова и других) вследствие поступления в электропечь всех металлов, содержащихся в не подвергнутых предварительной сортировке исходных ТБО, а также высокие эксплуатационные расходы.
В
практике мусоросжигания барабанные
печи ранее часто использовали с целью
дожигания продуктов сжигания ТБО на
колосниковых решетках. Такие барабаны
используют более чем на 70 заводах по
сжиганию ТБО. На этих заводах вращающиеся
со скоростью 12 об/мин. барабанные печи
установлены за каскадами на-
клонно переталкивающих колосниковых решеток. Помимо дожигания не-сгоревшей части ТБО, в барабанных печах происходит дробление образующегося при сжигании ТБО шлака, который с помощью системы шла-коудаления подают на пластинчатый конвейер и далее направляют в шлаковое отделение.
Сжигание в печах кипящего слоя. Сжигание в кипящем слое осуществляют за счет создания двухфазной псевдогомогенной системы «твердое- газ» путем превращения слоя отходое в «псевдожидкость» под действием динамического напора восходящего потока газа, достаточного для поддержания твердых частиц во взвешенном состоянии. Слой напоминает кипящую жидкость, и его поведение подчиняется законам гидростатики.
Технология сжигания ТБО в кипящем слое впервые реализована е начале 80-х годов в Японии. К середине 90-х годов этот метод получил достаточно широкое распространение (например, в Японии на егс долю приходится около 25 % ТБО, подвергаемых термической переработке). Считают, что сжигание в кипящем слое по экологоэкономичес-ким параметрам в ряде случаев превосходит традиционное слоевое сжигание. Развитие этого метода в Японии прогнозируют и в будущем, в том числе за счет модернизации устаревших заводов.
Печи для сжигания ТБО в кипящем слое обеспечивают наилучший режим теплопередачи и перемешивания обрабатываемого материала и по этим характеристикам превосходя! котлоагрегаты с переталкивающими решетками. Кроме того, аппараты кипящего слоя не имеют движущихся частей или механизмов. Однако необходимость обеспечения режима псевдоожижения обрабатываемого материала накладывает ограничение на его гранулометрический и морфологический состав, а также на теплотворную способность, в связи с чем в ряде случаев процесс сжигания в кипящем слое (особенно в циркулирующем ки-
пящем слое) оказывается более дорогим, чем слоевое сжигание.
Производительность печей для сжигания ТБО в кипящем слое составляет от 3 до 25 т/час. Преобладающие температуры сжигания - 850- 920 °С.
В связи с более низкой (на 50- 100 °С) температурой сжигания ТБО в кипящем слое по сравнению со слоевым сжиганием заметно снижается возможность образования оксидов азота за счет окисления азота воздуха, в результате чего снижаются выбросы NOx с отходящими газами. Кроме того, при сжигании в кипящем слое значительно легче связать кислые соединения серы и хлора путем добавки в топочное пространство порошков соединений кальция.
В зависимости от характера псевдоожижения различают три модификации кипящего слоя: стационарный, вихревой и циркулирующий кипящий слой. Роль теплоносителя в системах кипящего слоя обычно выполняет тонкозернистый песок, частицы которого создают большую по сравнению с традиционным колосниковым сжиганием поверхность нагрева.
После разогревания песка с помощью запальной горелки до 750- 800 °С начинают подачу в кипящий слой отходов, где последние смешиваются с песком и в процессе движения истираются. В результате хорошей теплопроводности песка отходы начинают быстро гореть равномерно во всем объеме кипящего слоя. Выделяющееся при этом тепло обеспечивает поддержание песка в горячем состоянии, что позволяет работать в автогенном режиме без подвода дополнительного топлива для обеспечения режима горения.
Для сжигания ТБО в стационарном кипящем слое печи оснащают цилиндрической или прямоугольной топкой, ограниченной снизу газораспределительной решеткой, конструкция которой обычно предусматривает возможность удаления шлака. Кипение слоя дробленых ТБО в камере сжигания обеспечивает поток подогретого первичного воздуха. Вторичное дутье подают поверх кипящего слоя (для обеспечения дожигания). Шлак вместе с частью песка выгружают снизу и подвергают грохочению с целью регенерации песка.
На рис. 9.10 приведена схема завода, на котором реализовано сжигание ТБО в стационарном кипящем слое. Как видно из рисунка, проект-но-компоновочные решения такого завода заметно отличаются от таковых заводов, на которых производят слоевое сжигание ТБО.