- •1.Нормативное сопротивление телопередачи.
- •2. Сопротивление теплопередачи однослойных ограждений.
- •3. Сопротивление теплопередачи многослойных ограждений.
- •5.От чего зависит к-нт теплопроводности материала?
- •6.Физический смысл коэффициентов теплопередачи внутренней и наружной поверхности ограждения (Ед. Измерениия). Сопротивление теплопереходу наружной и внутренней поверхностей ограждения.
- •8. Почему при выборе расчетной температуры учитывается инерционность ограждения?
- •9. Требуемое сопротивление теплопередаче ограждения
- •10. Последовательность определения требуемого сопротивления теплопередаче ограждения.
- •11.Как определяется нормативный температурный перепад при расчете требуемого сопротивления теплопередаче ограждения?
- •12. Сопротивление теплопередаче неоднородных ограждений.
- •13. Графически на примере изобразить разницу между термическим сопротивлением ограждения и сопротивлением теплопередаче ограждения.
- •14. Тепловой напор одноэтажных зданий.
- •15.Тепловой напор многоэтажных зданий.
- •18. Влияние ветрового напора на микроклимат в помещений.
- •20. Коэффициент воздухопроницания. От чего зависит коэф-т воздухопроницания.
- •21. Требуемое сопротивление воздухопроницанию ограждения.
- •22.Сопротивление воздухопроницанию ограждений.
- •23.Понятие сорбции и десорбции.
- •24. Влажность воздуха. Абсолютная влажность воздуха. Относительная влажность воздуха, её зависимость от температуры.
- •25. Парциальное и максимальное парциальное давление. От чего они зависят?
- •26. Как и почему влажность материала зависит от температуры?
- •27. Изменение влажности материала ограждений в теплый и холодный период года.
- •28. Какими способами можно устранить повышенную, сверхдопустимой влажность стен эксплуатируемых зданий?
- •29. Почему и как влажность материала ограждающих конструкций зависит от работы естественной вентиляции помещений?
- •30. Основные причины конденсационного увлажнения ограждающих конструкций.
- •31. Как должны располагаться слои многослойного ограждения в зависимости от их сопротивления паропроницанию?
- •32. Как должны располагаться слои многослойного ограждения в зависимости от их термического сопротивления?
- •33. Где и почему в многослойных ограждениях должен располагаться пароизоляционный материал?
- •34. Где и почему в многослойных ограждениях должны располагаться воздушные прослойки?
- •35. Назовите два основных принципа при назначении материала слоёв многослойного ограждения.
- •37. Сопротивление паропроницанию ограждения. Плоскость возможной конденсации.
8. Почему при выборе расчетной температуры учитывается инерционность ограждения?
Различия между расчетными температурами наружного воздуха надо знать, чтобы правильно выбрать теплозащиту ограждения. Ведь потери тепла конструкцией в течение суток происходят неравномерно. В ночное время, когда воздух наиболее холодный, температура наружной поверхности стены снижается максимально, и постепенно стена начинает охлаждаться по толщине. Быстрота охлаждения конструкции зависит от ее способности усваивать и отдавать тепло или от тепловой инерции. В бревенчатом срубе или в здании с массивными кирпичными стенами в самый морозный день человек не ощущает холода. Но в том же помещении, если оно плохо отапливается, через несколько дней после наступления оттепели становится холодно, промозгло и неуютно: низкие температуры наружного воздуха вызвали резкое уменьшение температуры внутренней поверхности ограждающей конструкции. Поэтому остывший за зиму дом приходится протапливать несколько дней.
В связи с этим для ограждающих конструкций большой инерционности (Д> 7) расчетная температура наружного воздуха принимается равной средней температуре наиболее холодной пятидневки. Период в пять суток принят потому, что его длительность достаточна для того, чтобы низкая температура наружного воздуха, установившаяся в течение этого периода, вызвала максимальное уменьшение температуры на внутренней поверхности стены.
К ограждающим конструкциям с большой инерционностью относятся стены, выполненные из полнотелого глиняного и силикатного кирпича и бревенчатые срубы. Для охлаждения ограждения малой инерционности достаточно одних суток, поэтому для их теплотехнического расчета принимается средняя температура наиболее холодных суток.
Ограждающие конструкции средней инерционности (Д изменяется в пределах 4—7) занимают промежуточное положение. Они могут быть изготовлены из легковесного и многодырчатого кирпича, пустотной керамики. Для этих ограждений расчетной является средняя температура наиболее холодных трех суток.
9. Требуемое сопротивление теплопередаче ограждения
Требуемое сопротивление теплопередач наружного ограждения определяется:-если расчетная t°C внутреннего воздуха меньше 12 °C,-если здания в сезонной эксплуатации,-если толщина утеплителя определяется исходя из перепада t°C воздуха и поверхности,-если толщина утеплителя определяется исходя из недопустимости выпадения конденсата на внут. поверхности ограждения или выполняется расчет на возможность появления конденсата.
Требуемое сопротивление теплопередаче, м2С/Вт, следует определять по формуле
Rт.тр
,
где tв — расчетная температура внутреннего воздуха, °С, принимаемая в соответствии с нормами технологического проектирования;
tн — расчетная зимняя температура наружного воздуха, °С, принимаемая по таблице 4.3 с учетом тепловой инерции ограждающих конструкций D (за исключением заполнений проемов) по таблице 5.2;
Тепловую инерцию ограждающей конструкции D следует определять по формуле
где R1, R2, ..., Rn — термическое сопротивление отдельных слоев ограждающей конструкции, м2С/Вт, определяемое по формуле (5.5);
s1, s2, ..., sn — расчетный коэффициент теплоусвоения материала отдельных слоев ограждающей конструкции в условиях эксплуатации по таблице 4.2, Вт/(м2С), принимаемый по приложению А.
Термическое сопротивление однородной ограждающей конструкции, а также слоя многослойной конструкции R, м2С/Вт, следует определять по формуле
где — толщина слоя, м;
— коэффициент теплопроводности материала однослойной или теплоизоляционного слоя многослойной ограждающей конструкции в условиях эксплуатации согласно таблице 4.2, Вт/(мС), принимаемый по приложению А.
Тепловая инерция ограждающей конструкции D |
Расчетная зимняя температура наружного воздуха tн, С |
Ддо 1,5 включ. |
Средняя температура наиболее холодных суток обеспеченностью 0,98 |
Св. 1,5 “ 4,0 “ |
То же, обеспеченностью 0,92 |
“ 4,0 “ 7,0 “ |
Средняя температура наиболее холодных трех суток |
“ 7,0
|
Средняя температура наиболее холодной пятидневки обеспеченностью 0,92 |
n — коэффициент, учитывающий положение наружной поверхности ограждающей конструкции по отношению к наружному воздуху, принимаемый по таблице 5.3;
в — коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, Вт/(м2С), принимаемый по таблице 5.4;
tв — расчетный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, °С, принимаемый по таблице 5.5;
