
- •Вопрос 1. Три составляющие современной метрологии.
- •Вопрос 2. Объекты метрологии (физическая величина, измерение).
- •Вопрос 3. Главная задача метрологии, погрешности.
- •Вопрос 4. Единство измерений.
- •Вопрос 5. Виды измерений (по способу получения информации).
- •Вопрос 6. Виды измерений (по характеру измерений измеряемой величины в процессе измерений, по количеству измерительной информации).
- •Вопрос 7. Виды измерений (абсолютные и относительные).
- •Вопрос 8. Виды средств измерений. Приведите характеристику вещественных мер и измерительных приборов. Назначение.
- •Вопрос 9. Средства измерений. Назначение. Приведите характеристику измерительных преобразователей, измерительных установок.
- •Вопрос 10. Виды средств измерений (измерительные приборы прямого действия и приборы сравнения).
- •Вопрос 11. Виды средств измерений – классификация по метрологическому назначению.
- •Вопрос 12. Качество измерения, виды погрешностей измерения.
- •Вопрос 13. Оценка погрешностей.
- •Вопрос 14. Классификация погрешностей (по источнику возникновения).
- •Вопрос 15. Классификация погрешностей (по условиям возникновения, по характеру проявления во времени).
- •Вопрос 16. Принципы описания и оценивания погрешностей (точечные и интервалочные оценки).
- •Вопрос 17. Систематические погрешности (обнаружение и исключение).
- •Вопрос 18. Компенсация систематической погрешности в процессе измерения.
- •Вопрос 19. Случайные погрешности, вероятностное описание результатов и погрешностей.
- •Вопрос 20. Кривая плотности распределения вероятностей случайной величины, гистограммы.
- •Вопрос 21. Дискретные случайные величины. Моменты случайных величин (дисперсия и математическое ожидание).
- •Вопрос 22. Оценка результата измерения со случайной погрешностью (нормальное распределение).
- •Вопрос 23. Нормальное распределение, правило 3σ.
- •Вопрос 24. Компенсация математической погрешности.
- •Вопрос 25. Обеспечение единства измерений (достоверность и точность измерений).
- •Вопрос 26. Априорная информация при измерениях, её назначение.
- •Вопрос 27. Порядок действий при осуществлении однократных измерений (в виде схемы с пояснениями).
- •Вопрос 28. Приведите уровни точности измерений. Какими факторами определяется точность измерений.
- •Вопрос 29. Метрологическая надежность средств измерений.
- •Вопрос 30. Основной постулат метрологии. Обоснуйте его.
- •Вопрос 31. Эмпирическое описание отсчета у аналоговых измерительных приборов. (гистограмма, полигон и плотность распределения вероятности).
- •Вопрос 32. Приведите вывод математической модели измерения по шкале порядка.
- •Вопрос 34. Общее правило образования начальных моментов. Рассмотрите свойства математического ожидания.
- •Вопрос 35. Общее правило образования центральных моментов. Рассмотрите свойства дисперсии.
- •Вопрос 36. Среднеквадратическое отклонение. Третий и четвёртый центральные моменты.
- •Вопрос 37. Назовите основные показатели качества, используемые в квалиметрии
- •Вопрос 39 . Опишите содержание следующих показателей качества: эстетические показатели; показатели технологичности; показатели транспортабельности; показатели стандартизации и унификации
- •Вопрос 40 .Опишите содержание следующих показателей качества: патентно-правовые показатели; экологические показатели; показатели безопасности; интегральный показатель качества.
- •Вопрос 41. Рассмотрите органолептические измерения: назначение, сущность, достоинства, недостатки, приведите примеры.
- •Вопрос 42 .Инструментальные измерения. Приведите характеристику автоматизированных и автоматические измерений
- •Вопрос 43 .Индикаторы. Назначение, техническая характеристика индикаторов (порог реагирования). Примеры.
- •Вопрос 44. Назовите основные группы метрологических характеристик средств измерений.
- •Вопрос 45. Метрологические характеристики средств измерений: характеристики, предназначенные для определения показаний средств измерений; характеристики качества показаний.
- •Вопрос 47. Сущность и назначение метрологической аттестации. Поверка.
- •Вопрос 48. Нормирование метрологических характеристик средств измерений. Номинальные характеристики средств измерений. Нормальные и рабочие условия применения средств измерений.
- •Вопрос 49 .Классы точности средств измерений
- •Вопрос 51. Проверка нормальности закона распределения вероятности результата измерения по виду гистограммы.
- •Вопрос 52. Проверка нормальности закона распределения вероятности результата измерения по критерию к. Пирсона.
- •Вопрос 53. Проверка нормальности закона распределения вероятности результата измерения по составному критерию.
- •Вопрос 54. Обработка экспериментальных данных, подчиняющихся нормальному закону распределения вероятности (представьте общий порядок действий).
- •Вопрос 55. Обработка экспериментальных данных, не подчиняющихся нормальному закону распределения вероятности (представьте общий порядок действий).
Вопрос 1. Три составляющие современной метрологии.
Современная метрология включает три составляющие: законодательную метрологию, фундаментальную (научную) и практическую (прикладную) метрологию.
Законодательная метрология - раздел метрологии, включающий комплексы взаимосвязанных и взаимообусловленных общих правил, требований и норм:
-подлежащих регламентации и контролю со стороны государства;
-направленных на обеспечение единства измерений и единообразия средств измерений.
Основополагающим этапом развития законодательной метрологии в Российской Федерации можно считать 1993 год, когда был принят Закон "Об обеспечении единства измерений",который впервые на высшем уровне установил основные нормы и правила управленияметрологической деятельностью в стране.
Головным институтом в системе Госстандарта (сейчас это Федеральное агентство по техническому регулированию и метрологии России) России является ВНИИМС - институт осуществляет исследования и разработки по правовым и методическим проблемам обеспечения единства измерений и деятельности метрологической службы России, выполняет функции информационного центра Госстандарта России в области метрологии, участвует в международном сотрудничестве в области законодательной метрологии.
Исследования включают:
Исследования и разработки в сфере государственного управления (регулирования) метрологической деятельностью в России;
Исследования по совершенствованию деятельности ГМС и развитию метрологической инфраструктуры.
Фундаментальная метрология – это та часть науки об измерениях, предметом которой является разработка фундаментальных основ этой науки и развитие на ее базе прикладных теорий и научных направлений.
Она совершенствует существующие, создает и развивает новые методы познания физических явлений и процессов, обеспечивающие заданную точность и достоверность измерений, осуществляет связь теории и практики на уровне математических моделей методов измерений и соответствующих технических решений (структур) средств измерений.
Прикладная (практическая) метрология - освещает вопросы практического применения разработок теоретической и положений законодательной метрологии. И именно с ее помощью осуществляется метрологическое обеспечение производства.
Вопрос 2. Объекты метрологии (физическая величина, измерение).
Объектом метрологии являются физические величины. Под понятием «физическая величина» в метрологии, как и в физике, понимается свойство физических объектов (систем), общее в качественном отношении многим объектам, но в количественном отношении индивидуальное для каждого объекта, т. е. свойство, которое может быть для одного объекта в то или иное число раз больше или меньше, чем для другого (например, длина, масса, плотность, температура, сила, скорость). Количественное содержание свойства, соответствующего понятию «физическая величина», в данном объекте – размер физической величины.
Совокупность величин, связанных между собой зависимостями, образует систему физических величин. Объективно существующие зависимости между физическими величинами представляют рядом независимых уравнений. Число уравнений m всегда меньше числа величин n. Поэтому m величин данной системы определяют через другие величины, а п – m величин – независимо от других. Последние величины принято называть основными физическими величинами, а остальные – производными физическими величинами.
Наличие ряда систем единиц физических величин, а также значительного числа внесистемных единиц, неудобства, связанные с пересчетом при переходе от одной системы единиц к другой, требовало унификации единиц измерений. Рост научно-технических и экономических связей между разными странами обусловливал необходимость такой унификации в международном масштабе.
Требовалась единая система единиц физических величин, практически удобная и охватывающая различные области измерений. При этом она должна была сохранить принцип когерентности (равенство единице коэффициента пропорциональности в уравнениях связи между физическими величинами).
В России действует ГОСТ 8.417-2002, предписывающий обязательное использование СИ. В нем перечислены единицы измерения, приведены их русские и международные названия и установлены правила их применения. По этим правилам в международных документах и на шкалах приборов допускается использовать только международные обозначения. Во внутренних документах и публикациях можно использовать либо международные либо русские обозначения (но не те и другие одновременно).
Производные единицы Международной системы единиц образуются с помощью простейших уравнений между величинами, в которых числовые коэффициенты равны единице. Так, для линейной скорости в качестве определяющего уравнения можно воспользоваться выражением для скорости равномерного движения v = l/ t.
При длине пройденного пути (в метрах) и времени t, за которое пройден этот путь (в секундах), скорость выражается в метрах в секунду (м/с). Поэтому единица скорости СИ – метр в секунду – это скорость прямолинейно и равномерно движущейся точки, при которой она за время tс перемещается на расстояние 1 м.
Субъекты метрологии:
– государственная метрологическая служба;
– метрологические службы федеральных органов исполнительной власти и юридических лиц;
– метрологические организации