Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Anisimov_A_Yu_Zadachi_po_finansam.doc
Скачиваний:
9
Добавлен:
01.04.2025
Размер:
1.4 Mб
Скачать

Задача № 1

Определить величину денежных агрегатов М0, М1, М2, М3 на основании следующих данных (в млн. ден. ед.):

- наличные денежные средства в банках 500

- срочные вклады населения в Сберегательном банке 1630

- депозитные сертификаты 645

- расчётные, текущие счета юридических лиц 448

- вклады населения до востребования 300

- наличные денежные средства в обращении 170.

Решение:

М0 = наличные денежные средства в обращении;

М1= М0+расчётные и текущие счета юридических лиц+вклады населения до востребования;

М21+срочные вклады населения в сберегательном банке;

М3= М2+депозитные сертификаты и облигации госзайма.

Ответ: М0=170, М1=918, М2=2548, М3=3193 млн. ден. ед.

Задача № 2

Дефлятор ВНП составляет 3,6. Номинальный ВНП 4 трлн. руб. Определить реальный ВНП.

Решение:

Ответ: 1,11 трлн. руб.

Задача № 3

Первоначальная сумма Р = 7000 руб. помещена в банк на срок n = 2 года под процентную ставку i = 15% годовых. Определить будущую сумму, при условии, что начисление процентов осуществляется по схеме простых процентов.

Решение:

FV=P*(1+n*i)

Ответ: 9100 руб.

Задача № 4

Первоначальная сумма Р = 6000 руб., наращенная сумма S = 7200 руб., процентная ставка i = 10% годовых (проценты простые). Определить период начисления процентов (n).

Решение:

Ответ: 2 года

Задача № 5

Наращенная сумма S = 20000 руб., период начисления процентов n = 1,5 года, простая процентная ставка i = 17% годовых. Определить первоначальную сумму (P).

Решение:

Ответ: 15936,25 руб.

Задача № 6

Первоначальная сумма Р = 24000 руб. В первой половине года применялась простая процентная ставка i1 = 12% годовых, во второй половине года применялась простая процентная ставка i2 = 15% годовых. Определить наращенную сумму (S).

Решение:

)

S=P*(1+n1*i1+n2*i2)

Ответ: 27240 руб.

Задача № 7

Кредит на сумму 15000 руб. выдаётся на полгода по простой учётной ставке 12% годовых. Определить, какую сумму получит заёмщик.

Решение:

P=S*(1-n*d)

Ответ: 14100 руб.

Задача № 8

Вексель на сумму 35000 руб. с датой погашения 27 ноября 2010 года был учтён банком 11 августа 2010 года по простой учётной ставке 13% годовых. Продолжительность года составляет 365 дней. Определить, какая сумма была выплачена банком.

Решение:

P=S*(1- ).

t= 21(август)+30 (сентябрь)+31 (октябрь)+27 (ноябрь) -1=108 дней

Р=35000*(1-0,13*108/365)=33653,70

Ответ: 33653,70 руб.

Задача № 9

Первоначальная сумма Р = 37000 руб. помещена в банк на срок n = 2 года под i = 15% годовых (проценты сложные). Определить наращенную сумму.

Решение:

S=P*(1+i)n

Ответ: 48932,5 руб.

Задача № 10

Наращенная сумма S = 41000 руб., период начисления процентов составляет 2 года, сложная процентная ставка = 15% годовых. Определить первоначальную сумму.

Решение:

Р =

Ответ: 31001,89 руб.

Задача № 11

Первоначальная сумма P = 24000 руб., период начисления процентов составил 5 лет, причём в первые три года применялась сложная процентная ставка равная 12% годовых, а в оставшиеся два года применялась сложная процентная ставка равная 15% годовых. Определить наращенную сумму.

Решение:

S=P*(1+i1)n1*(1+i2)n2

Ответ: 44 592,41 руб.

Задача № 12

Первоначальная сумма составляет 14000 руб., период начисления процентов равен двум годам, сложная номинальная процентная ставка составляет 12% годовых. Проценты начисляются ежеквартально. Определить наращенную сумму.

Решение:

Ответ: 17734,78 руб.

Задача № 13

Первоначальная сумма P = 7000 руб., период начисления n = 4 года, сложная учётная ставка составляет 13% годовых. Определить наращенную сумму.

Решение:

Ответ: 12218,59 руб.

Задача № 14

Каждый месяц цены растут на 2%. Определить, каков ожидаемый индекс инфляции за год.

Решение:

Индекс инфляции (Iигод) = (1+рост цены)n, где n = 12 мес.

Ответ: т.е. цены за год вырастут в 1,27 раза или на 27%

Задача № 15

Уровень инфляции в марте составил 3%, в апреле – 5%, в мае – 3%. Определить индекс инфляции за рассматриваемый период.

Решение: Iигод=(1+αмарт)*(1+αапрель)*(1+αмай)

Ответ: 1,114

Задача № 16

Период начисления (n) составляет 6 месяцев (0,5 года), ожидаемый ежемесячный уровень инфляции 1,5%. Под какую простую ставку ссудных процентов нужно положить первоначальную сумму, чтобы обеспечить реальную доходность i = 6% годовых (проценты простые).

Решение:

Iигод = (1+ α)n =(1+0,015)6 = 1,0934, т.е. уровень инфляции (α) за рассматриваемый период составил 0,0934, тогда

Ставка ссудных процентов = = = 0,2524, т.е. 25,24% годовых

Ответ: 25,24% годовых.

Задача № 17

Первоначальная сумма положена в банк на срок январь-июнь под простую ставку ссудных процентов iα=25% годовых. Уровень инфляции в январе составил 0,5%, в феврале – 2%, в марте – 1%, в апреле – 0,5%, в мае – 3%, в июне – 1%. Определить, какова реальная доходность в виде годовой простой ставки ссудных процентов.

Решение:

n = 6 месяцев = 0,5 года.

Iигод =(1+0,005)*(1+0,02)*(1+0,01)*(1+0,005)*(1+0,03)*(1+0,01)=1,0825, т.е. уровень инфляции за рассматриваемый период α =0,0825. Тогда реальная доходность в виде годовой простой ставки ссудных процентов

i =

Ответ: 7,9% годовых.

Задача №18

Период начисления составляет 2 года, ожидаемый ежегодный уровень инфляции 12%. Определить, под какую ставку ссудных процентов нужно положить первоначальную сумму, чтобы обеспечить реальную доходность i = 6% годовых (проценты сложные).

Решение:

Iи=(1+iα)n =(1+0,12)2=1,2544, т.е. α=0,2544

=(1+0,06)* - 1=0,1872

Ответ: 0,1872 или 18,72% годовых.

Задача № 19

Первоначальная сумма внесена на счёт в банке на срок 2 года под сложную ставку ссудных процентов iα = 15% годовых. Уровень инфляции за первый год составил 12%, за второй год – 14%. Определить, какова реальная доходность в виде сложной годовой ставки ссудных процентов.

Решение:

Iи = (1+0,12)*(1+0,14)=1,2768, т.е. уровень инфляции α за рассматриваемый период составил 0,2768. Следовательно, реальная доходность в виде сложной годовой процентной ставки ссудных процентов будет равна:

i= = - 1=0,0177 или 1,77% годовых.

Ответ: 1,77% годовых.

Задача № 20

Определить, какой вариант инвестирования первоначальной суммы на срок 0,5 года лучше: под простую процентную ставку 18% годовых или под простую учётную ставку 16% годовых.

Решение:

(или 17,4% годовых), т.к. 17,4% ˂18%, то лучше вариант с постой процентной ставкой.

Ответ: лучше вариант с простой процентной ставкой.

Задача № 21

Определить, какой вариант инвестирования первоначальной суммы на срок 2 года лучше: под простую процентную ставку 17% годовых или под сложную процентную ставку 15,5% годовых.

Решение:

i= =((1+0,155)2-1)/2= 0,167 или 16,7% годовых, т.к. 16,7%˂17%, то лучше вариант с простой процентной ставкой.

Ответ: лучше вариант с простой процентной ставкой.

Задача № 22

Определить, какой вариант инвестирования первоначальной суммы на срок 2 года лучше: под простую процентную ставку 19% годовых или под номинальную сложную процентную ставку 14% годовых с ежемесячным начислением.

Решение:

=((1+0,14/12)2*12-1)/2=0,1605 или 16,5% годовых, т.к. 16,5%˂19%, то лучше вариант с простой процентной ставкой.

Ответ: лучше вариант с простой процентной ставкой.

Задача № 23

Найти эффективную годовую ставку сложных процентов, эквивалентную номинальной сложной процентной ставке 12% годовых с ежемесячным начислением.

Решение:

12-1=0,1268 или 12,68% годовых

Ответ: 12,68% годовых

Задача № 24

Найти годовую номинальную сложную процентную ставку (проценты начисляются каждые полгода), эквивалентную сложной процентной ставке 20% годовых.

Решение:

, т.е. 19,09% годовых.

Ответ: 19,09% годовых

Задача № 25

Вкладчик в течение 3 лет вносит в банк сумму 1200 руб. Проценты на вклад начисляются по сложной процентной ставке 14% годовых. Найти будущую сумму ренты постнумерандо.

Решение:

= 4127,52 руб.

Ответ: 4127,52 руб.

Задача № 26

Вкладчик в течение 3 лет вносит в банк сумму 1200 руб. Проценты на вклад начисляются по сложной процентной ставке 14% годовых. Найти будущую сумму ренты пренумерандо.

Решение:

= 4705,37 руб.

Ответ: 4705,37 руб.

Задача № 27

Вкладчик в течение 3 лет вносит в банк сумму 1200 руб. Проценты на вклад начисляются по сложной процентной ставке 14% годовых. Определить современную стоимость простой ренты постнумерандо.

Решение:

= 2785,96 руб.

Ответ: 2785,96 руб.

Задача № 28

Определить размер ежегодных платежей в конце года по сложной процентной ставке 14% годовых для накопления через 4 года суммы 70000 руб. (простая рента постнумерандо).

Решение:

=14224,33 руб.

Ответ: 14224,33 руб.

Задача № 29

Определить размер ежегодных платежей в начале года по сложной процентной ставке 14% годовых для накопления через 4 года суммы 70000 руб. (простая рента пренумерандо).

Решение:

=12477,49 руб.

Ответ: 12477,49 руб.

Задача № 30

Взят кредит на сумму 60000 руб. сроком на 4 года под 15% годовых. Определить размер ежегодных погасительных платежей в конце года.

Решение:

= 21015,92 руб.

Ответ: 21015,92 руб.

Задача № 31

Взят кредит на сумму 60000 руб. сроком на 4 года под 15% годовых. Определить размер ежегодных погасительных платежей в начале года.

Решение:

= 18274,71 руб.

Ответ: 18274,71руб.

Задача № 32

Найти наращенную сумму общей ренты сроком (n) 2 года с выплатами (W) по 7000 руб. в конце каждого квартала (p) и начислением процентов по ставке (i) 11% годовых ежемесячно (m).

Решение:

7000*

Ответ: 61640,85 руб.

Задача № 33

Выдан кредит на сумму 50000 руб. на 3 года по ставке 16% годовых ежеквартально. Определить размер полугодовых платежей.

Решение:

Здесь р = 2, m = 4, i = , n = 3*m = 3*4 = 12.

=

=5327,61* =10868,32 руб.

Ответ: 10868,32 руб.

Задача № 34

Найти современную стоимость общей бессрочной ренты с выплатами по 9000 руб. в начале каждого полугодия и процентной ставкой 12% годовых ежеквартально.

Решение:

Здесь р = 2, m = 4, i = .

=

Тогда А=

Ответ: 147783,33 руб.

Задача № 35

10 августа заёмщик обратился за получением ломбардного кредита и предоставил в залог ценности на сумму 90000 руб. Сумма ломбардного кредита составила 75% от стоимости залога, процентная ставка 14% годовых. Определить величину кредита.

Решение:

Ломбардный кредит обычно выдаётся на 3 месяца, используется французская практика (продолжительность года К=360 дней, учитывается точное количество дней в месяце). Следовательно, кредит предоставлен на 3 месяца (10 августа – 10 ноября), его срок составляет t = 22 дня (август) + 30 дней (сентябрь) + 31 день (октябрь) + 10 дней (ноябрь) – 1= 92 дня.

Определяем сумму ломбардного кредита Р = 90000 руб.*0,75 =67500 руб.

Далее определяем проценты I =

Заёмщик получит сумму в размере = 67500 – 2415 = 65085 руб.

Ответ: 65085 руб.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]