
- •Происхождение атмосферы Земли
- •Круговорот серы в природе
- •Экологические последствия гидротехнического преобразования природы человеком
- •Круговорот фосфора в природе
- •Структура атмосферы и тенденции ее изменения
- •Закономерности изменения плотности популяции в системе ресурс-потребитель
- •Понятие об экологии
- •Динамика развития популяции типа Олли
- •Круговорот углерода в природе
- •Биосфера и ее границы
- •Глобальные проблемы охраны и защиты окружающей среды
- •Государственная экологическая экспертиза
- •Состав и основные функции биосферы
- •Взаимосвязь растительного и животного мира планеты
- •Природные и искусственные экологические системы
- •Социально-экономические проблемы экологии
- •Основные законы и указы по охране окружающей среды
- •Новые и возобновляемые источники энергии
- •Общая характеристика среды обитания человека
- •Понятие об экономическом механизме природопользования
- •Влияние на организм биосферы разработки нефтяных и газовых месторождений
- •Понятие о предельно-допустимом содержании вредных веществ
- •Воздух, вода, недра как природные ресурсы
- •Взаимодействие общества и природной среды
- •Понятие экологического мониторинга
- •Численность населения Земли и ее влияние на экологический кризис
- •Основные направления выхода России из экологического кризиса
- •Состояние экологии России
- •Обеспеченность планеты природными ресурсами
- •Топливно-энергетический комплекс и окружающая среда
- •Международное сотрудничество в области экологии
- •Экология и научно-технический прогресс
- •Функции живого вещества планеты: энергетические, концентрационные, средообразующие, транспортные
- •Понятие о комплексном освоении недр
- •Научно-технический прогресс как выход из экологического кризиса
- •Тепловой баланс планеты
- •Точки зрения на выход из экологического кризиса
- •Общий энергетический баланс Земли
- •Состав окружающей среды в настоящее время
- •Мероприятия, проводимые по охране окружающей среды
- •Прогноз состояния окружающей среды на предстоящие 50 лет
- •Связь между атмосферным загрязнением и круговоротом веществ
- •Глобальные изменения окружающей среды
- •Круговорот свободного кислорода
- •Структура государственных экологических органов управления
- •Круговорот воды в природе
- •Задачи правительства в области охраны окружающей среды
- •Взаимосвязь атмосферы и живой материи
- •Значение кислорода в энергетическом обеспечении высокоорганизованной живой материи
- •Природные механизмы регулирования теплового баланса Земли
- •Виды участия России в международной экологической деятельности
- •Период промышленной революции и ее влияние на окружающую среду
- •Международные экологические организации и их функции
- •Гидросфера Земли и ее структура
- •Процесс образования и назначение гумуса в почве
- •Круговорот азота в природе
- •Задачи курса «экология»
- •Общественные экологические организации
- •Этапы взаимодействия человека и окружающей среды
- •Значение воды для организма биосферы
- •Значение атмосферных газов (кислорода, углерода, азота) для жизнедеятельности организмов
- •Влияние промышленного загрязнения природы на жизнь человека и живых организмов
- •Структура почвенного слоя поверхности Земли
- •Биогенность естественного воздуха
- •Энергомасообмен в экологических системах
- •Понятие о ноосфере
Динамика развития популяции типа Олли
Поскольку популяция изменчива, нас интересует не только ее величина и состав в каждый данный момент, но также и то, как она изменяется. Как известно, динамика численности популяций в основе определяется рождаемостью и смертностью.
Скорость роста популяции в естественных местообитаниях будет зависеть от климатических изменений, от снабжения пищей и от того, ограничено ли размножение определенным временем года или другими условиями. В связи с этим в росте популяции можно выявить такие точки, при которых популяция не сможет самостоятельно воспроизводиться. Это так называемый эффект Олли, который впервые был им отмечен и описан в 1931 году, эффект гласит: если популяция достигает минимального количества особей, то она деградирует, т.е. каждому виду свойственен специфический для него минимальный размер популяции, нарушение которого ставит под угрозу существование популяции, а иногда и вида в целом. И, наоборот, в определенных (особо благоприятных) условиях популяции оказываются в состоянии перенаселения, что также приводит к деградации.
Скопление особей популяции, с одной стороны, усиливает конкуренцию между ними за пищевые ресурсы и жизненное пространство, с другой - приводит к повышению способности группы в целом к выживанию. Таким образом, как «перенаселенность», так и «недонаселенность» может выступать в качестве лимитирующего фактора
В основу эффекта Олли входят два фундаментальных закона экологии: Либиха и Шелфорда. Это два закона о лимитирующих факторах, из которых первый свидетельствует о том, что ограничителем является лимитирующий фактор, находящийся в минимуме, а второй закон - в максимуме. А всё это сводится в закон толерантности Шелфорда (см. рис.1): процветание организма ограничено зонами максимума и минимума определенных экологических факторов. Между ними располагается зона оптимума. Каждый вид характеризуется своей толерантностью - способностью переносить отклонения экологических факторов от оптимальных, аналогичное положение проявляется и в сообществах более высокого порядка - популяциях. Именно поэтому, любая популяция стремится к динамическому равновесию, т.е. к гомеостазу, при достижении которого каждая популяция обладает строго определенной генетической, фенотипической, половозрастной и другой структурой. Она не может состоять из меньшего или большего числа индивидов, чем необходимо для обеспечения стабильной реализации этой структуры и устойчивости популяции к факторам внешней среды (Степановских, 2009). Отсюда следует, что изменение популяции какого-либо вида - это результат нарушения равновесия между ее биотическим потенциалом (прибавление особей) и сопротивлением окружающей среды (гибелью особей).
Круговорот углерода в природе
В основе биогенного круговорота углерода лежит неорганическое вещество – диоксид углерода. В природе СО2 входит в состав атмосферы, а также находится в растворенном виде в гидросфере.
Включение углерода в состав органического вещества происходит в процессе фотосинтеза, в результате которого на основе углекислого газа и воды образуются сахара. В дальнейшем, другие процессы биосинтеза преобразуют их в более сложные органические вещества. Эти соединения формируют ткани фотосинтезирующих организмов и служат источником органических веществ для животных.
В процессе дыхания все организмы окисляют сложные органические вещества в конечном итоге до СО2, который выводится во внешнюю среду, где может вновь вовлекаться в процесс фотосинтеза. Углеродсодержащие органические соединения тканей живых организмов после их смерти подвергаются биологическому разрушению организмами-редуцентами, в результате чего углерод в виде Н2СО3 вновь поступает в круговорот.
При определенных условиях разложение накапливаемых мертвых остатков в почве идет замедленным темпом через образование гумуса, минерализация которого под воздействием грибов и бактерий происходит с низкой скоростью. В некоторых случаях цепь разложения органического вещества бывает неполной. В частности, деятельность организмов-деструкторов может подавляться недостатком кислорода или повышенной кислотностью. В этом случае органические остатки накапливаются в виде торфа, углерод не высвобождается и круговорот приостанавливается. Аналогичным образом в прошлые геологические эпохи происходило образование каменного угля и нефти. Сжигание ископаемого топлива в настоящее время возвращает углерод, выключенный ранее из круговорота, в атмосферу. В гидросфере приостановка круговорота углерода связана с включением СО2 в состав СаСО3 в виде известняков. В этом случае углерод выключается из круговорота на целые геологические эпохи до поднятия органогенных пород над уровнем моря. Тогда круговорот возобновляется через выщелачивание известняков атмосферными осадками, а также биогенным путем под воздействием лишайников, корней растений. Схемы круговорота углерода вы найдёте в этой статье.