- •1 Вопрос
- •1.1.1. Основные понятия и аксиомы статики
- •Различают три группы связей:
- •1. Гибкие связи (трос, цепь, ремень, канат). Реакции связей направлены по оси связей (рис. 1.8).
- •2. Твердые, идеально гладкие связи. Реакция направлена по общей нор-мали к поверхностям
- •3. Шарнирные связи. Шарниром в механике называется устройство, до-пускающее поворот одного тела
- •2 Вопрос
- •Виды опор
- •Внешние силы
- •Внутренние силы
- •3 Вопрос Проэкция силы на ось и плоскость
- •4 И 5.Сложение двух сил.Сложение трех сил, не лежащих в одной плоскости. Равнодействующая.
- •6.Вектор момента силы относительно центра.Момент силы относительно оси.
- •7. Лемма о параллельном переносе силы
- •Основная теорема статики
- •8. Условия равновесия пространственной системы сил
- •Привидение плоской системы сил к простейшему виду
- •9. Привидение плоской системы сил к простейшему виду
- •11. Однофазный синусоидальный ток и его характеристика.
- •13. Определение скорости и ускорения точки при естественном задании движения
- •14. Поступательное движение твердого тела. Вращательное движение тела: способы задания, угловая скорость и угловое ускорение.
- •15. Скорости и ускорения точек вращающегося тела.
- •22 Вопрос ... Свободные колебания материальной точки без учета сил сопротивления. Дифференциальное уравнение гармонических колебаний и его решение.
- •23 Вопрос ... Влияние сил сопротивления на свободные колебания точки. Апериодическое движение.
- •24 Вопрос.. Вынужденные колебания без учета сил сопротивления. Дифференциальное уравнение вынужденных колебаний и его интегрирование. Резонанс.
- •Колебаний, имеющих собственную частоту k , амплитуда которых определяется воздействием возмущающей силы и не зависит от начальных условий:
- •Вынужденных колебаний, происходящих с частотой возмущающей силы и не зависящих от начальных условий:
- •Вопрос 31. Прочность, жесткость, устойчивость.Задачи сопротивления материалов.
- •Вопрос 32.Класификацияч сил действующих на элементы конструкции
- •33 Вопрос. Понятие о деформации.Основные виды дифоормации.Диформации линейные и угловые ,абсолютные и относительные .Продолные и поперечные диформации.
- •34. Понятие о напряжениях
- •35. Внутренние силы. Внутренние силовые факторы и их эпюры. Алгоритм построения эпюр
- •36. Расчетная схема.Изображение расчетной схемы. Деление на силовые участки
- •40. Основные характеристики прочности.
- •Условный предел текучести
- •41. Геометрические характеристики плоских сечений.
- •42.Деформация сдвига. Условия прочности при расчете на срез, на смятие, на разрыв.
- •43.Кручение.
- •44. Расчеты на прочность и жесткость при кручении.
- •4. Условие жесткости при растяжении (сжатии) записывается в виде
35. Внутренние силы. Внутренние силовые факторы и их эпюры. Алгоритм построения эпюр
Внутренние силы
Внутренние силы сопромат
Под действием внешней нагрузки любое реальное твердое тело изменяет свои размеры и форму, или деформируется, при этом порождая внутренние силы, противодействующие деформациям.
Именно деформация (даже очень малая) и позволяет телу создать требуемую внутреннюю силу - силу противодействия внешним силам
пример внутренних сил
Когда мы к концу веревки подвешиваем груз, веревка удлиняется. Удлинение приводит к возникновению внутри веревки внутренней силы, которая «тянет» камень вверх, удерживая его от падения (действие и противодействие (внутренняя сила) равны по величине и противоположны по направлению). Если внутренняя сила, обусловленная удлинением, не сможет уравновесить вес груза, то веревка порвется.
Внутренние силовые факторы
В процессе деформации бруса, под нагрузкой происходит изменение взаимного расположения элементарных частиц тела, в результате чего в нем возникают внутренние силы. По своей природе внутренние силы представляют собой взаимодействие частиц тела, обеспечивающее его целостность и совместность деформаций. Для определения этих сил применяют метод сечений: надо мысленно рассечь брус, находящийся в равновесии, на две части и рассмотреть равновесие одной из них.
Под действием внешних нагрузок в поперечном сечении бруса возникают следующие внутренние силовые факторы (рис. 2.1):
Nz = N - продольная растягивающая (сжимающая) сила
Mz = T - крутящий (скручивающий) момент
Qx (Qy) = Q - поперечные силы
Mx (My) = M - изгибающие моменты
Рис. 2.1
Каждый внутренний силовой фактор определяется из соответствующего уравнения равновесия оставшейся после рассечения бруса части (уравнения статики):
Эпюры внутренних силовых факторов
В инженерной практике особое место занимает умение ясно представить взаимодействие сил в конструкции, а также связь между внешними и внутренними силами в элементах конструкции, для этого графически изображают внутренние силовые факторы в функции осевой координаты и называют эти графики - эпюрами.
36. Расчетная схема.Изображение расчетной схемы. Деление на силовые участки
Расчетная схема - это упрощенная, идеализированная схема, которая отражает наиболее существенные особенности объекта, определяющие его поведение под нагрузкой.
Расчет реальной конструкции начинается с выбора расчетной схемы. Выбор расчетной схемы начинается со схематизации свойств материала и характера деформирования твердого тела, затем выполняется схематизация геометрической формы реального объекта.
Формы элементов конструкции на расчетной схеме
Формы элементов конструкций, используемых в расчетных схемах, можно свести к четырем категориям: стержню, оболочке, пластине и массивному телу.
Стержень на расчетной схеме
Стержень – тело, у которого один размер (длина) значительно превышает два других размера.
Представим себе некоторую плоскую фигуру, перемещающуюся в пространстве так, что центр тяжести этой фигуры все время остается на некоторой линии (прямой или кривой), а сама фигура остается перпендикулярной к этой линии. Описанная такой фигурой форма дает нам очертание стержня. Линия, вдоль которой перемещается фигура, называется осью стержня, а сама фигура – его поперечным сечением.
Оболочка и пластина на расчетной схеме
Оболочка – это тело, ограниченное двумя криволинейными поверхностями, у которого один размер (толщина) много меньше двух других размеров. Пластина – это тело, ограниченное двумя параллельными плоскостями.
Массивное тело на расчетной схеме
Массивное тело – тело, у которого все три размера имеют один порядок.
В курсе сопромата в основном изучается напряженно-деформированное состояние призматических стержней с прямолинейной осью. Оболочки и массивные тела, как правило, не могут быть рассчитаны методами сопромата.
