
- •Методы измерения механических напряжений, сил и моментов Содержание
- •Введение
- •Методы измерений деформаций и механических напряжений
- •Термоупругий метод измерения механических напряжений
- •Метод рентгеновской тензометрии
- •Методы измерений сил и крутящих моментов
- •Изменение силы методом уравновешивания
- •Заключение
- •Контрольные вопросы:
- •Список литературы:
Метод рентгеновской тензометрии
Этот метод применяется для исследования напряженного состояния и структур объектов из поликристаллических материалов. Он основан на измерении межплоскостных расстояний с использованием явления дифракции рентгеновских лучей на плоскостях решеток поликристаллических материалов. При облучении решетки поликристаллического образца монохроматическими рентгеновскими лучами атомы вынуждаются к колебаниям в режиме рентгеновского излучения и действуют как корпускулярные генераторы колебаний, излучение которых интерферирует в зависимости от внутренних геометрических условий, которые определяются уравнением Брегга (10):
=2*dhkl * sinhkl , (10)
где --длина волны рентгеновского излучения;--угол дифракции;hkl—индексы Миллера для плоскостей решеток.
Рисунок 3 – Рентгеновская тензометрия
Если в поликристаллическом образце отсутствуют внутренние напряжения, то расстояния между соответствующими плоскостями решеток одинаковы и не зависят от положения этих плоскостей в образце. На рисунке 3 а) показано распределение нескольких плоскостей решеток с равными индексами в свободном от механических напряжений образце, а на рисунке 3 б) – при наличии напряжения растяженияx вдоль одной из осей. Упругие деформации, обусловленные внешними или внутренними напряжениями, приводят к изменению расстояния между плоскостями решеток. Распределение внутренних напряжений в деформированном кристалле может быть найдено по экспериментально измеренным значениям относительного изменения периода решетки в данном кристаллографическом направлении (d/d)hklи микроскопической кривизне атомных плоскостей.
Реализация метода рентгеновской тензометрии поясняется на рисунке 3 в). Рентгеновское излучение от источника 1направляется на установленный в центре лимба 3 исследуемый образец 2, от которого излучение после интерферирования отражается сцинтиляционный счетчик 4. Поворачивая образец и счетчик вокруг оси, перпендикулярной плоскости диска, определяют углы дифракции . По измеренным значениям углов, соответствующих дифракционным максимумам, и по известной длине волны излучения определяют расстояния между плоскостями решетки, которые дают информацию о структуре, асимметрии и деформации кристаллической решетки. При помощи такого измерительного устройства можно исследовать дифракционные линии с углами дифракции от 25до 82при углахмежду поверхностью образца и плоскостью решетки от – 65до +65.
Процесс измерения на основе рентгеновской интерференции поддается автоматизации. Для определения упругих деформаций и напряжений в различных деталях разработаны типовые программы для обработки полученной информации на ЭВМ.
Метод рентгеновской тензометрии позволяет как бы визуализировать искажения кристаллической структуры и по виду картины муара определить тип искажения. Метод позволяет измерять статические и динамические напряжения, а также градиенты напряжений на очень малых участках, линейные размеры которых в мелкокристаллических материалах не превышают десятки микрометров. При этом можно измерить деформацию в любом направлении, образующем с нормалью к поверхности объекта углы от 0до 65.
Это позволяет найти микроструктуру распределения деформаций и напряжений в тонком слое, что особенно важно при исследовании объектов с поверхностным упрочнением, в которых механические напряжения дислоцированы в тонком поверхностном слое толщиной в десятки или сотни микрометров.