
- •1. Цели и основные задачи прикладных исследований и испытаний станков и инструментов. Связь ииси с фундаментальными, общеинженерными и специальными дисциплинами.
- •2. Фундаментальные, прикладные и поисковые исследования
- •3. Методы проведения научных исследований
- •4. Основные понятия об измерениях физической величины. Прямые и косвенные методы измерения.
- •5. Аналоговые и цифровые методы измерений. Непрерывные и дискретные методы измерения.
- •6. Классификация средств измерений. Структура измерительных приборов. Метрологические характеристики средств измерения.
- •7. Основные понятия и определения. Планы первого порядка. Дробный факторный эксперимент.
- •8. Основы планирования эксперимента. Проведение эксперимента и обработка его результатов.
- •9. Общие сведения о моделировании технических систем. Математические модели технических объектов на микроуровне.
- •10. Основы построения теоретических математических моделей на макроуровне. Способы построения теоретических моделей
- •11. Исследование и испытание станков, проводимые для оценки точности станков. Условия проведения исследование и испытание геометрической точности станков
- •12. Измерительный инструмент для проверки геометрической точности станков. Измерение прямолинейности направляющих станков
- •13. Программа испытаний на геометрическую точность для токарного станка
- •14. Проверка точности работы станка при обработке образцов
- •15. Понятие кинематической точности и причины кинематической ошибки станка. Понятие мертвого хода и местной кинематической погрешности
- •16. Источники кинематической погрешности станков. Методы проверки кинематической точности станков и устройства их реализующие.
- •17. Общие сведения о температурных деформациях в станках. Приборы для измерения температур в станках. Температурные поля и температурные деформации корпусных деталей
- •18. Методы снижения влияния температурных деформаций корпусных деталей на точность обработки.
- •19. Общие положения исследования жёсткости несущих систем и их элементов. Приборы для измерения жесткости. Экспериментальные исследования жесткости на станках.
- •20. Определение жесткости станков при резании. Метод исследования с обработкой на проход эксцентричной заготовки. Метод двух оправок.
- •21. Общие положения исследования жесткости несущих систем и их элементы. Экспериментальные исследования жесткости на моделях.
- •22. Испытания станков на виброустойчивость (метод предельной стружки). Приборы и методы экспериментального исследования колебаний в станках.
- •23. Определение виброустойчивости станка без резания- по амплитудно-фазовой частотной характеристики ( афчх резания и афчх упругой системы). Анализ афчх с позиции устойчивости системы.
- •24. Исследование колебаний станков на холостом ходу. Приборы применяемые для измерения относительных колебаний. Анализ частотного спектра колебаний холостого хода.
- •31. Демпферы и динамические гасители колебаний их применение и классификация.
- •32.Цель энергетических испытаний. Методика испытания на мощность.
- •33. Точность позиционирования. Механизм определения ошибок позиционирования. Оптимизация позиционирования по пути и времени. Обьемная точность металлорежущих систем.
- •34. Основные параметры контроля систем с чпу. Методы испытания систем чпу на работоспособность.
- •35. Испытание станка после ремонта под нагрузкой. Испытание станка после ремонта на чистоту обработки. Испытание автоматической линии
- •36. Испытание инструмента. Исследование стойкости инструмента(ускоренный метод определения поля режимов резания)
4. Основные понятия об измерениях физической величины. Прямые и косвенные методы измерения.
физическими понимают величины, которые характеризуют свойства физического мира и применяются в физических науках и технике. Для них существуют единицы измерения. Физические величины в зависимости от правил их измерения подразделяются на три группы:
- величины, характеризующие свойства объектов (длина, масса);
величины, характеризующие состояние системы (давление,
температура);
- величины, характеризующие процессы (скорость, мощность).
К нефизическим относят величины, для которых нет единиц измерения. Они могут характеризовать как свойства материального мира, так и понятия, используемые в общественных науках, экономике, медицине. В соответствии с таким разделением величин принято выделять измерения физических величин и нефизические измерения. Другим выражением такого подхода являются два разных понимания понятия измерения:
измерение в узком смысле как экспериментальное сравнение одной измеряемой величины с другой известной величиной того же качества, принятой в качестве единицы;
измерение в широком смысле как нахождение соответствий между числами и объектами, их состояниями или процессами по известным правилам.
Ниже приведены основные понятия, относящиеся к физической величине (здесь и далее все основные понятия по метрологии и их определения приводятся по упомянутой выше рекомендации по межгосударственной стандартизации РМГ 29-99):
- размер физической величины — количественная определенность физической величины, присущая конкретному материальному объекту, системе, явлению или процессу;
- значение физической величины — выражение размера физической величины в виде некоторого числа принятых для нее единиц;
- истинное значение физической величины — значение физической величины, которое идеальным образом характеризует в качественном и количественном отношении соответствующую физическую величину (может быть соотнесено с понятием абсолютной истины и получено только в результате бесконечного процесса измерений с бесконечным совершенствованием методов и средств измерений);
действительное значение физической величины -значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него;
единица измерения физической величины -физическая величина фиксированного размера, которой условно присвоено числовое значение, равное 1, и применяемая для количественного выражения однородных с ней физических величин;
система физических величин - совокупность физических величин, образованная в соответствии с принятыми принципами, когда одни величины принимаются за независимые, а другие определяются как функции этих независимых величин;
основная физическая величина – физическая величина, входящая в систему величин и условно принятая в качестве независимой от других величин этой системы.
производная физическая величина – физическая величина, входящая в систему величин и определяемая через основные величины этой системы;
система единиц физических единиц - совокупность основных и производных единиц физических величин, образованная в соответствии с принципами для заданной системы физических величин.
Классификация измерений
В зависимости от рода измеряемой величины, условий проведения измерений и приемов обработки экспериментальных данных измерения могут классифицироваться с различных точек зрения. С точки зрения общих приемов получения результатов они разделены на четыре класса:
прямые; косвенные; совокупные; совместные.
Прямое измерение – измерения, при котором искомое значение получают непосредственно. Например, измерение длины детали линейкой. Этот термин возник как противоположный термину косвенное измерение. Строго говоря, измерение всегда прямое и рассматривается как сравнение величины с ее единицей. В таком случае лучше применять термин прямой метод измерений. Косвенное измерение – определение искомого значения величины на основании результатов прямых измерений других величин, функционально связанных с искомой величиной. Например, определение объема цилиндра по результатам измерений его диаметра и высоты. Косвенные измерения относятся к явлениям, которые непосредственно не воспринимаются органами чувств и познание которых требует экспериментальных устройств. Исторической предпосылкой косвенных измерений было открытие закономерных связей и единства различных явлений в отдельных областях природы и во всей природе в целом, что привело к установлению закономерных связей между различными физическими величинами.