Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Stat_fizika_ekz_bilety_MPP-10-1.docx
Скачиваний:
1
Добавлен:
26.12.2019
Размер:
3.23 Mб
Скачать

33 И 34. Фазовые переходы второго рода. Модель Изинга. Теория Ландау фазовых переходов второго рода.

Обнаруживают фазовые переходы по резкому изменению свойств и особенностям характеристик вещества в момент фазового перехода: по выделению или поглощению скрытой теплоты; скачку объема или скачку теплоемкости и коэффициента теплового расширения; изменению электросопротивления; возникновению магнитных, сегнетоэлектрических, пьезомагнитных свойств, изменению картины рентгеновской дифракции и т.д. Какая из фаз вещества устойчива при тех или иных условиях, определяется одним из термодинамических потенциалов. При заданных в термостате температуре и объеме это свободная энергия Гельмгольца, при заданных температуре и давлении - потенциал Гиббса.

Потенциал Гельмгольца F (свободная энергия)- это разность между внутренней энергией вещества Е и его энтропией S, умноженной на абсолютную температуру Т :

(1)

И энергия, и энтропия в (1) являются функциями внешних условий (p и T), а фаза, которая реализуется при определенных внешних условиях, обладает наименьшим из всех возможных фаз потенциалом Гиббса.

При изменении внешних условий может оказаться, что свободная энергия другой фазы стала меньше. Изменение внешних условий всегда происходит непрерывно, и поэтому его можно описать некоторой зависимостью объема системы от температуры . Учитывая это согласование в значениях Т и V, можно сказать, что смена стабильности фаз и переход вещества из одной фазы в другую происходят при определенной температуре на термодинамическом пути , а значения для обеих фаз являются функциями температуры вблизи этой точки .

Рассмотрим более подробно, как происходит изменение знака .

Вблизи зависимость для одной и для другой фазы можно аппроксимировать некоторыми полиномами, которые зависят от :

(2)

(3)

Разность между свободными энергиями двух фаз принимает вид

(4)

Пока разность достаточно мала, можно ограничиться только первым слагаемым и утверждать, что если , то при низких температурах стабильна фаза I, при высоких температурах - фаза II. В самой точке перехода первая производная свободной энергии по температуре естественно испытывает скачок: при , а при . Следовательно, при фазовом переходе энтропия испытывает скачок, определяя скрытую теплоту перехода , так как . Описанные переходы называются переходами первого рода.

При равны не только свободные энергии, но и их производные по температуре, то есть . Из (2) следует, что такая температура, по крайней мере с точки зрения равновесных свойств вещества, не должна быть выделенной. Действительно, при и в первом приближении по отношению к имеем

и, по крайней мере в этой точке, никакого фазового перехода произойти не должно: тот потенциал Гиббса, который был меньше при , будет меньше и при .

В природе, конечно же, не все так однозначно. Иногда есть глубокие причины для того, чтобы при одновременно выполнялись два равенства и . Более того, фаза I становится абсолютно неустойчивой относительно сколь угодно малых флуктуаций внутренних степеней свободы при , а фаза II - при . В этом случае и происходят те переходы, которые получили название переходов второго рода. Вторая производная свободной энергии по температуре определяет теплоемкость вещества

.

Таким образом, при переходах второго рода должен наблюдаться скачок теплоемкости вещества, но не должно быть скрытой теплоты. Поскольку при фаза II абсолютно неустойчива относительно малых флуктуаций и то же относится к фазе I при , то при переходах второго рода не должны наблюдаться ни перегрев, ни переохлаждение, то есть отсутствует температурный гистерезис точки фазового перехода. Причины термодинамически необходимых условий перехода второго рода:

При и при существует одно и то же вещество. Взаимодействия между элементами, его составляющими, не изменяются скачком, это и есть физическая природа того, что термодинамические потенциалы для обеих фаз не могут быть совсем независимыми. Как возникает связь между и , и и т.д., можно проследить на простых моделях фазовых переходов, вычисляя термодинамические потенциалы при разных внешних условиях методами статистической механики. Наиболее просто вычислять свободную энергию .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]