Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Materialovedenie.docx
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
138.81 Кб
Скачать

5. Атомно-кристаллическое строение металлов

Каждый металл (вещество) может находиться в четырех агрегатных состояниях: газообразном, жидком, твердом и в виде плазмы. В газообразном состоянии расстояние между атомами (частицами) велико, силы взаимодействия малы и атомы хаотично пере- мещаются в пространстве, отталкиваясь друг от друга. Атомы газообразного вещества обладают большой кинетической энергией. В жидком металле атомы сохраняют лишь ближний порядок, т.е. в небольшом объеме упорядоченно и закономерно расположено небольшое количество атомов. Ближний порядок неустойчив, он может возникать и исчезать под действием тепловых колебаний.

 

В металлах, находящихся в твердом состоянии, порядок расположения атомов строго определен и закономерен, силы взаимодействия уравновешены, тело сохраняет свою форму. Металлы имеют кристаллическое строение с правильным закономерным расположением атомов в пространстве. Закономерное расположение атомов (точнее, положительно заряженных ионов) приведено на рис. 2.1. Воображаемые линии, проведенные через центры атомов, расположенных в одной плоскости, образуют решетку, в узлах которой располагаются атомы.

 

Такая конфигурация называется кристаллографической плоскостью. Многократное повторение кристаллографических плоскостей в пространстве позволяет получить пространственную кристаллическую решетку (рис. 2.2). Пространственная кристаллическая решетка сложна в изображении, поэтому представление об атомном строении кристаллов дается в виде элементарных кристаллических ячеек. Под элементарной кристаллической ячейкой понимают минимальный объем, дающий представление об атомной структуре металла в целом, его повторение в пространстве образует кристаллическую решетку. Элементарные кристаллические ячейки характеризуются следующими основными параметрами: периодом решетки, координационным числом, атомным радиусом, базисом(атомной плотностью).

Периодом решетки называется расстояние между центрами двух соседних частиц (атомов, ионов) в элементарной ячейке решетки (рис. 2.3).

Периоды решетки измеряют в нанометрах (нм) или пикометрах (пм).

Координационное число К показывает количество атомов, находящихся на самом близком расстоянии от любого выбранного атома в решетке. Под атомным радиусом понимают половину межатомного расстояния между центрами ближайших атомов в кристаллической решетке элемента при равновесных условиях. Базисом решетки называется количество атомов, приходящихся на одну элементарную ячейку решетки.

 

Простейшим типом кристаллического строения является кубическая решетка, в которой атомы расположены в углах куба (см. рис. 2.3). На ее примере покажем основные параметры решетки:

• период решетки равен 6;

• координационное число К= 6;

• базис решетки равен 1, каждый из атомов, расположенных в углах куба, принадлежит одной из восьми элементарных ячеек, т.е. на одну ячейку приходится ⅛ атома).

В простой кубической решетке атомы уложены (упакованы) недостаточно плотно. Стремление атомов занять места, наиболее близкие друг к другу, приводит к образованию новых типов решеток.

6. Баббит — антифрикционный сплав на основе олова или свинца, предназначенный для использования в виде слоя, залитого или напыленногопо корпусу вкладыша подшипника.

Наиболее распространённые варианты сплава:

  • 90 % олова, 10 % меди;

  • 89 % олова, 7 % сурьмы, 4 % меди;

  • 80 % свинца, 15 % сурьмы, 5 % олова;

В качестве присадок могут быть использованы: сурьмамедьникельмышьяккадмийтеллуркальцийнатриймагний.

Температура плавления — 300—440 °C.

Первый подшипниковый сплав[1] разработан американцем Исааком Бэббитом[2] в 1839 году.

Баббит, основу которого составляет олово (Б88, Б83, Б83С, SAE11, SAE12, ASTM2), используют, когда от антифрикционного материала требуются повышенная вязкость и минимальный коэффициент трения. Оловянный баббит по сравнению со свинцовым обладает более высокойкоррозионной стойкостьюизносостойкостью и теплопроводностью.

Баббиты на основе свинца (Б16, БН, БСб, БКА, БК2, БК2Ш, SAE13, SAE14, ASTM7, SAE15, ASTM15) обладают более высокой рабочей температурой, чем на основе олова. Применяется для подшипников дизельных двигателейпрокатных станов.

Свинцовокальциевый баббит используют в подшипниках подвижного состава железнодорожного транспорта.

Все баббиты имеют существенный недостаток — низкое сопротивление усталости, что ухудшает работоспособность подшипника. Из-за небольшой прочности баббиты могут успешно эксплуатироваться только в подшипниках, имеющих прочный стальной (чугунный) или бронзовый корпус. Обычно тонкостенные подшипниковые вкладыши автомобильных двигателей изготовляют штамповкой из биметаллической ленты, полученной на линии непрерывной заливки. Продолжительность работы подшипников зависит от толщины баббитового слоя, залитого на стальной вкладыш. Уменьшение толщины слоя увеличивает срок службы подшипника.

Припой — металл или сплав, применяемый при пайке для соединения заготовок и имеющий температуру плавления ниже, чем соединяемые металлы. Применяют сплавы на основе оловасвинцакадмиямединикеля и др.

Пайку осуществляют или с целью создания механически прочного (иногда герметичного) шва, или для получения электрического контакта с малым переходным сопротивлением. При пайке места соединения и припой нагревают. Так как припой имеет температуру плавления значительно ниже, чем соединяемый металл (или металлы), то он плавится, в то время как основной металл остаётся твёрдым. На границе соприкосновения расплавленного припоя и твёрдого металла происходят различные физико-химические процессы. Припой смачивает металл, растекается по нему и заполняет зазоры между соединяемыми деталями. При этом компоненты припоя диффундируют в основной металл, основной металл растворяется в припое, в результате чего образуется промежуточная прослойка, которая после застывания соединяет детали в одно целое.

Выбирают припой с учётом физико-химических свойств соединяемых металлов, требуемой механической прочности спая, его коррозионной устойчивости и стоимости. При пайке токоведущих частей необходимо учитывать удельную проводимость припоя.

7.Белый чугун




Чугун, в составе которого весь углерод находится в химически связанном состоянии в виде цементита Структура белого чугуна зависит от концентрации углерода. При этом различают три типа белых чугунов:

  • доэвтектический с концентрацией углерода 2,14...4,3 %, имеющий структуру, состоящую из перлита, ледебурита и цементита вторичного;

  • эвтектический с концентрацией углерода свыше 4,3 %±0,1 %;

  • заэвтектический с концентрацией углерода свыше 4,3 % и со структурой, состоящей из ледебурита и первичного цементита.

Из-за высокой твердости, низкой прочности и пластичности белые чугуны не нашли широкого применения в технике. Применяют его в тех случаях, когда изделие крупногабаритное и работает в условиях повышенного истирания.

8Белый чугун

В белом чугуне весь углерод находится в виде цементита. Структура такого чугуна — перлитледебурит и цементит. Такое название этот чугун получил из-за светлого цвета излома.

Белые чугуны

Белые чугуны редко используются в народном хозяйстве в качестве конструкционных материалов, так как из-за большого содержания цементита очень хрупкие и твердые, с трудом отливаются и обрабатываются инструментом. Из них делают детали гидромашин, пескометов и других конструкций, работающие в условиях повышенного абразивного изнашивания. Для увеличения изно-состойкости белые чугуны легируют хромом, ванадием, молибденом и другими карбидообразующими элементами. Маркировка белых чугунов не установлена.

Разновидностью белых чугунов является отбеленные чугуны. Поверхностные слои изделий из таких чугунов имеют структуру белого (или половинчатого) чугуна, а сердцевина - серого чугуна. Отбел на некоторую глубину (12...30 мм) получают путем быстрого охлаждения поверхности (например, отливка чугуна в металлические или песчаные формы). Для снятия структурных напряжений, которые могут привести к образованию трещин, отливки подвергают нагреву при 500...550 °С. Высокая иэносостойкость отбеленных чугунов обусловлена твердостью поверхности, достигающей 400... 500 HV. Из отбеленного чугуна изготовляют прокатные валки листовых станов, колеса, шары для мельниц и др.

8. Ко́вкий чугу́н — условное название мягкого и вязкого чугуна, получаемого из белого чугуна отливкой и дальнейшей термической обработкой. Используется длительный отжиг, в результате которого происходит распад цементита с образованием графита, то естьпроцесс графитизации, и поэтому такой отжиг называют графитизирующим.

Ковкий чугун, как и серый, состоит из сталистой основы и содержит углерод в виде графита, однако графитовые включения в ковком чугуне иные, чем в обычном сером чугуне. Разница в том, что включения графита в ковком чугуне расположены в форме хлопьев, которые получаются при отжиге, и изолированны друг от друга, в результате чего металлическая основа менее разобщена, и чугун обладает некоторой вязкостью и пластичностью. Из-за своей хлопьевидной формы и способа получения (отжигграфит в ковком чугуне часто называют углеродом отжига.

По составу белый чугун, подвергающийся отжигу на ковкий чугун, является доэвтектическим и имеет структуру ледебурит + цементит (вторичный) + перлит. Для получения структуры феррит + углерод отжига в процессе отжига должен быть разложен цементит ледебурита, вторичный цементит и цементит эвтектоидный, то есть входящий в перлит. Разложение цементита ледебурита и цементита вторичного (частично) происходит на первой стадии графитизации, которую проводят при температуре выше критической (950—1000 °С); разложение эвтектоидного цементита происходит на второй стадии графитизации, которую проводят путём выдержки при температуре ниже критической (740—720 °C), или при медленном охлаждении в интервале критических температур (760—720 °C).

9. Бето́н, бетониум (от фр. bétonium) — искусственный каменный строительный материал, получаемый в результате формования и затвердевания рационально подобранной и уплотненной смеси, состоящей из вяжущего вещества (цемент или др.), крупных и мелких заполнителей, воды. В ряде случаев может содержать специальные добавки, а также отсутствовать вода (например в асфальтобетоне). Изготовление

Бетон производится смешиванием цемента, песка, щебня и воды (соотношение их зависит от марки цемента, фракции и влажности песка и щебня), а также небольших количеств добавок (пластификаторыгидрофобизаторы, и т. д.). Цемент и вода являются главными связующими компонентами при производстве бетона. Например, при применении цемента марки 400 для производства бетона марки 200 используется соотношение 1:3:5:0,5. Если же применяется цемент марки 500, то при этом условном соотношении получается бетон марки 350. Соотношение воды и цемента («водоцементное соотношение», «водоцементный модуль»; обозначается «В/Ц») — важная характеристика бетона. От этого соотношения напрямую зависит прочность бетона: чем меньше В/Ц, тем прочнее бетон. Теоретически, для гидратации цемента достаточно В/Ц = 0,2, однако у такого бетона слишком низкая пластичность, поэтому на практике используются В/Ц = 0,3—0,5.

Распространенной ошибкой при кустарном производстве бетона является чрезмерное добавление воды, которое увеличивает подвижность бетона, но в несколько раз снижает его прочность.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]