
- •3. Классификация металлов
- •5. Виды дефектов кристаллической решётки
- •6. Закономерности кристаллизации металлов
- •8. Диаграмма состояния и её построение Правило фаз
- •9. Диаграмма состояния системы с полной нерастворимостью в тв состоянии
- •10. Диаграмма состояния с полной растворимостью
- •13. Примеси, фазы и структуры в железоуглеродистых сплавах
- •14. Диаграмма состояния Фе-Фе3ц
- •15. Углерродистые стали. Классификация и маркировка сталей.
- •21. Упругая ипластическая деформации
- •26. Основные виды термообработки
- •27. Образование аустенита и рост его зерна при нагреве
- •28. Механизм превращения аустенита в перлит
- •29. Мартенситное превращение аустенита
- •30. Промежуточное превращение
- •31. Превращения при нагреве закалённой стали
- •33. Закалка
- •34. Закаливаемость
- •35. Поверхностное упрочнение стали
- •Азотирование (насыщение поверхностного слоя азотом) Газовое азотирование
- •Диффузионная металлизация (насыщение поверхностного слоя различными металлами) Твёрдая диффузионная металлизация
- •Жидкая диффузионная металлизация
- •Газовая диффузионная металлизация
- •38. Стали для цементации
- •43. Классификация и маркировка легированных сталей
- •44. Строительные легированные стали
- •46. Улучшаемые легированные стали
- •49. Стали для измерительного инструмента
- •51. Коррозия и меры борьбы
- •54. Медь и её сплавы
- •58. Неорганические Неметаллические мат-лы
43. Классификация и маркировка легированных сталей
1. По структуре после охлаждения на воздухе выделяются три основных класса сталей (cм. все записи с тегом стали и сплавы): перлитный; мартенситный; аустенитный.
Стали перлитного класса характеризуются малым содержанием легирующих элементов; мартенситного – более значительным содержанием; аустенитного – высоким содержанием легирующих элементов.
2. По степени легирования (по содержанию легирующих элементов):
низколегированные – 2,5…5 %;
среднелегированные – до 10 %;
высоколегированные – более 10%.
3. По числу легирующих элементов:
трехкомпонентные (железо, углерод, легирующий элемент);
четырехкомпонентные (железо, углерод, два легирующих элемента) и так далее.
4. По составу: никелевые, хромистые, хромоникелевые, хромоникельмолибденовые и так далее (признак– наличие тех или иных легирующих элементов).
Классификация сталей
5. По назначению:
конструкционные;
инструментальные (режущие, мерительные, штамповые);
стали и сплавы с особыми свойствами (нержавеющие, жаропрочные и термоустойчивые, износоустойчивые, с особыми магнитными и электрическими свойствами).
Маркировка легированных сталей
Марка легированной качественной стали состоит из сочетания букв и цифр, обозначающих ее химический состав. Легирующие элементы имеют следующие обозначения: хром (Х), никель (Н), марганец (Г), кремний (С), молибден (М), вольфрам (В), титан (Т), тантал (ТТ), алюминий (Ю), ванадий (Ф), медь (Д), бор (Р), кобальт (К), ниобий (Б), цирконий (Ц), селен (Е), редкоземельные металлы (Ч).
Цифра, стоящая после буквы, указывает на содержание легирующего элемента в десятых долях процента. Если цифра не указана, то легирующего элемента содержится 0,8-1,5 %, за исключением молибдена и ванадия (содержание которых в солях обычно до 0.2-0.3%) А также бора (в стали с буквой Р его должно быть не менее 0…0.010%). В конструкционных качественных легированных сталях две первые цифры показывают содержимое углерода в сотых долях процента.
44. Строительные легированные стали
Строительная сталь предназначается для изготовления строительных конструкций — мостов, газо- и нефтепроводов, ферм, котлов и т. д. Все строительные конструкции, как правило, являются сварными, и свариваемость — одно из основных свойств строительной стали.
Конструкционные низколегированные стали в горячекатаном или нормализованном состоянии применяют для строительных конструкций, армирования железобетона, магистральных нефте- и газопроводов. Для изготовления деталей машин их применяют сравнительно редко.
Эта группа сталей содержит относительно малые количества углерода 0,1—0,25 %. Повышение прочности достигается легированием обычно дешевыми элементами — марганцем и кремнием.
По сравнению с углеродистыми сталями более высокая прочность строительных низколегированных сталей достигается упрочнением феррита за счет легирования сравнительно малыми количествами кремния и марганца, а также хрома, никеля, меди и некоторых других элементов.
К низколегированным строительным сталям относятся стали марок 14Г2, 17ГС, 14ХГС, 15ХСНД, 34Г2АФ, 17Г2АФБ и другие.
45. Конструкционные Цементуемые легированные стали целесообразно применять для крупных и тяжело нагруженных деталей, которым необходимо иметь, кроме высокой твердости поверхности, достаточно прочную сердцевину.
Цементуемые легированные стали обычно содержат до 0 25 - 0 30 % углерода. Все цементуемые стали - низколегированные. Они хорошо обрабатываются режущим инструментом, не содержат дефицитных легирующих примесей, дешевы. Для измельчения зерна цементуемые стали микролегируют V, Ti, Nb, Zr, Al и N, которые, образуя карбиды, карбонитриды и нитриды, задерживают рост аустенитного зерна.
Для тяжелонагруженных деталей следует применять стали, легированными никелем (до 4 %), повышающий пластичность мартенсита, и молибденом (до 0,8 %), резко повышающий прокаливаемость цементованного слоя. Никель и молибден в отличии от марганца хрома не склонны к внутреннему окислению, которая снижает прокаливаемость цементованного слоя и ухудшает механические свойства.
Введение ванадия (20ХФ) в пределах 0,1-0,2 % улучшают механические свойства и менее склонны к перегреву, малая прокаливаемость.
Хромоникелевые стали обладают высокой прочностью, пластичностью. Повышают вязкость сердцевины и цементуемого слоя.
Марганец, сравнительно дешевый элемент, применяется как заменитель в стали никеля.
Для цементации (нитроцементации) используют так же сталь, содержащая бор (0,001-0,005 %). Бор повышает устойчивость переохлажденного аустенита в области перлита и поэтому увеличивает прокаливаемость, только для доэвтектоидных сталей, но не улучшает прокаливаемость цементованного слоя. в промышленности применяют сталь 20ХГР, а также сталь 20ХГНР