Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
классификация транзисторов и усилителей.docx
Скачиваний:
3
Добавлен:
01.04.2025
Размер:
386.74 Кб
Скачать

Режим c

В режиме C, также как и в режиме B, усилительный элемент воспроизводит только положительные, либо только отрицательные входные сигналы. Однако рабочая точка усилительного элемента выбрана так, что при нулевом напряжении на входе (или при нулевом управляющем токе) усилительный элемент заперт. Ток через усилительный элемент возникает только после перехода управляющего сигнала через ноль; если этот сигнал гармонический, то усилитель воспроизводит одну искажённую полуволну (угол проводимости меньше 180°)[24]. В недонапряжённом режиме C амплитуда входного сигнал невелика, поэтому усилитель способен воспроизвести вершину этой полуволны. В перенапряжённом режиме C амплитуда входного сигнала столь велика, что усилитель искажает (срезает) и вершину полуволны: такой каскад преобразует синусоидальный входной сигнал в импульсы тока трапециевидной формы. Предельный теоретический КПД недонапряжённого усилителя в режиме C, так же как и в режиме B, равен 78,5 %, перенапряжённого — 100 %[15]. Из-за высоких нелинейных искажений усилители в режиме С, даже двухтактные, непригодны для воспроизведения широкополосных сигналов (звука, видеосигналов, постоянного тока). В резонансных усилителях радиопередатчиков они, напротив, широко применяются благодаря их высокому КПД.[24].

В англоязычной литературе и недонапряжённый, и перенапряжённый режимы относят к «классическому», или «настоящему», режиму С (англ. classic Class C, true Class C). Современные усилители мощности радиочастот обычно работают в ином, «смешанном» режиме С (англ. mixed-mode Class C), который иногда выделяется в особый «режим СD». В течение одного периода транзистор такого усилителя последовательно проходит через четыре фазы — отсечки, нарастания коллекторного тока, насыщения и снижения тока, причём длительность активных фаз (нарастания и снижения тока) сопоставима с длительностью фаз отсечки и насыщения[25].

Режим d

Структурная схема усилителя класса D без петли обратной связи

Идея усилителя с импульсным управлением выходными лампами была предложена Д. В. Агеевым (СССР, 1951)[26] и Алеком Ривзом[en] (Великобритания)[27]. В 1955 году Роже Шарбонье (Франция) впервые назвал назвал такие устройства усилителями класса D, а уже через год это название вошло в радиолюбительскую практику[26]. В 1964 году в Великобритании выпустили первые транзисторные УМЗЧ класса D, не имевшие коммерческого успеха, в 1974 и 1978 столь же безуспешные попытки предприняли Infinity и Sony[28]. Массовый выпуск усилителей этого класса стал возможен только после отладки производства силовых МДП-транзисторов, состоявшейся в первой половине 1980-х годов[29].

В режиме C форма тока выходных транзисторов может принимать вид почти прямоугольных импульсов. В режиме D такая форма тока заложена по определению: транзистор либо заперт, либо полностью открыт. Сопротивление открытого канала современных силовых МДП-транзисторов измеряется десятками и единицами миллиОм, поэтому в первом приближении можно считать, что в режиме D транзистор работает без потерь мощности. КПД реальных усилителей класса D равен примерно 90 %, в наиболее экономичных образцах 95 %, при этом он мало зависит от выходной мощности[30]. Лишь при малых, 1 Вт и менее, выходных мощностях усилитель класса D проигрывает в энергопотреблении усилителю класса B[31].

Несмотря на созвучие с английским digital («цифровой»), усилители класса D не являются, в общем случае, цифровыми устройствами. Простейшая и наиболее распространённая схема усилителя класса D с синхронной широтно-импульсной модуляцией (ШИМ) — это полностью аналоговая схема. В её основе — задающий генератор сигнала треугольной формы, частота которого обычно равна 500 кГц, быстродействующий компаратор, и формирователь импульсов, открывающих выходные транзисторы. Если мгновенное значение входного напряжения превышает напряжение на выходе генератора, компаратор подаёт сигнал на открытие транзисторов верхнего плеча, если нет — то на открытие транзисторов нижнего плеча. Формирователь импульсов усиливает эти сигналы, попеременно открывая транзисторы верхнего и нижнего плеча, а включенный между ними и нагрузкой LC-фильтр сглаживает отдаваемый в нагрузку ток. На выходе усилителя — усиленная и демодулированная, очищенная от высокочастотных помех копия входного напряжения[32][33].

Миниатюрные законченные стереоусилители «класса Т» на микросхемах Tripath. Слева модуль с выходной мощностью 6+6 Вт, справа 20+20 Вт. Чёрные детали, выстроенные рядами в середине каждой платы — катушки выходных фильтров

Схема с аналоговой ШИМ устойчива при любых значениях выходного напряжения[31], но не позволяет добиться высокого качества воспроизведения звука, даже если охватить её обратной связью. Нелинейные искажения класса D имеют несколько причин: нелинейность генератора сигнала треугольной формы, нелинейность катушек индуктивности выходного фильтра, нелинейность из-за мёртвого времени между включениями верхнего и нижнего плеча усилителя. В отличие от традиционных усилителей, в той или иной мере подавляющих нестабильность питающих напряжений, в усилителях класса D низкочастотные помехи беспрепятственно проходят с питающих шин на выход усилителя. Эти помехи, шумы и дрейф не только накладываются на усиленный сигнал, но и модулируют его по амплитуде[34]. Чтобы снизить эти искажения, конструкторы перешли от синхронной ШИМ к асинхронной модуляции с переменной частотой следования импульсов и к сигма-дельта-модуляции. Неизбежным следствием этого стал рост частоты переключения выходных транзисторов до десятков МГц и снижение КПД из-за роста потерь при переключении. Для того, чтобы снизить эти потери, конструкторы применили простейшие цифровые схемы, уменьшавшие частоту переключения (например, преобразовывавшие последовательность управляющих импульсов 01010101…, соответствующую нулевому входному напряжению, в 0011…, 00001111… и так далее). Естественным развитием этого подхода стал полный отказ от аналоговой модуляции и переход к чисто цифровой обработке входных сигналов[35], а побочным следствием — разрастание номенклатуры однобуквенных «классов усиления».

В 1998 году основанная Адья Трипати компания Tripath выпустила полностью цифровой интегральный УМЗЧ класса D с заявленными показателями качества, приближавшимися к показателям «обычных» усилителей высокой верности. Новые микросхемы пошли в продажу под вывеской «класса Т» и получили в целом положительные отзывы прессы и радиолюбителей. Усилитель Tripath TA2020 вошёл в список «25 микросхем, которые потрясли мир» журнала IEEE Spectrum, а сама компания прекратила существование в 2007 году, не выдержав конкуренции с крупными производителями[36][37]. За «классом T» последовали «класс J» компании Crown International[en], «класс TD» компании Lab.gruppen, «класс Z» компании Zetex[en] и радиочастотный «класс M» компании PWRF. Обозреватель журнала EDN[en] Пол Рейко заметил, что «cочинение новых „классов усилителей“ — не более чем маркетинговая уловка, которая приносит компании больше вреда, чем пользы … хотите новый класс усиления — купите Allen-Bradley и изобретите заново класс AB»[38].