
- •В.Ф. Мухин управление техническими системами
- •Предисловие
- •Лекция 1. Общие сведения об автоматизации, управлении и регулировании. Развитие материальной базы систем автоматического управления. Классификация систем управления по назначению
- •Лекция 2. Основные понятия и определения теории автоматического регулирования
- •2.1. Общие определения и термины
- •2.2. Системы автоматического регулирования
- •2.3. Общие принципы управления и регулирования
- •Лекция 3. Технические устройства систем автоматического регулирования
- •Лекция 4. Управление в системах с путевым контролем
- •Лекция 5. Системы автоматического регулирования. Задачи теории автоматического регулирования. Методы описания переходных процессов в сар
- •Лекция 6. Типовые динамические звенья систем автоматического регулирования
- •Лекция 7. Устойчивость и качество систем автоматического регулирования
- •7.1. Устойчивость сар
- •7.2. Качество регулирования
- •7.3. Коррекция сар
- •Лекция 8. Нелинейные системы регулирования
- •Лекция 9. Многомерные автоматические системы. Оптимальное управление
- •Библиографический список
- •Содержание
Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
«Омский государственный технический университет»
В.Ф. Мухин управление техническими системами
Конспект лекций
Омск 2005
УДК 681.5 (075)
ББК 32.965я73
М92
Рецензенты:
Р.А. Ахмеджанов, канд. техн. наук, проф. ОмГУПС;
М.А. Красников, зам. директора ОИОГТ
Мухин В.Ф.
М92 Управление техническими системами: Конспект лекций. – Омск: Изд-во ОмГТУ, 2005. – 68 с.
В конспекте лекций кратко изложены основные положения теории автоматического управления, дающие представление о методах анализа и синтеза при проектировании автоматических систем. Конспект предназначен для студентов машиностроительных специальностей дневной и заочной форм обучения.
Печатается по решению редакционно-издательского совета Омского государственного технического университета
УДК 681.5 (075)
ББК 32.965я73
© В. Ф. Мухин, 2005
©
Предисловие
Курс лекций «Управление техническими системами» является для машиностроительных специальностей одной из общепрофессиональных дисциплин и поэтому не ставит своей задачей обучение проектированию и расчету систем автоматического регулирования и управления. Исходя из этого, содержание лекций ограничивается сведениями о методах конструирования систем управления и направлено на понимание уровня сложности и решения задач при создании автоматических устройств для различных производственных процессов. По той же причине в лекциях не подчёркивается конкретная связь с отраслью производства, так как полученные сведения в дальнейшем являются фундаментом для изучения специальных дисциплин, таких как «Автоматизация сварочных процессов» или «Автоматизация процессов обработки металлов давлением» и т. п., учитывающих специализацию инженера-машиностроителя. Таким образом, принимая во внимание современные представления о высшей школе, лекции предназначены для установления кругозора и создания ориентира по данному направлению науки, чтобы исключить впечатления о несвойственных функциях и дать информацию о возможности управления техническими системами.
В отличии от учебника и учебного пособия конспект лекций имеет цель ввести студента в предмет и направить на его изучение, не представляя полную информацию для самостоятельной работы. Понимание существа и принципа построения систем управления, полученное в результате прослушанных лекций, даёт возможность при необходимости перейти к самостоятельному чтению и изучению имеющихся многочисленных учебников и учебных пособий для различных уровней подготовки по конкретным разделам и практической интерпретации результатов в технических устройствах.
Объём курса лекций соответствует минимальному количеству часов, отведённых на аудиторные занятия согласно учебному плану для специальностей машиностроительного факультета.
Лекция 1. Общие сведения об автоматизации, управлении и регулировании. Развитие материальной базы систем автоматического управления. Классификация систем управления по назначению
Под управлением в общепринятом смысле понимают организацию какого-либо процесса для достижения поставленной цели. В машиностроении имеют в виду технологические процессы изготовления какого-либо вида продукции или рабочие процессы какого-либо агрегата, устройства, установки, задействованных в таком технологическом процессе. По мере развития материальной базы промышленности и усложнения технологий быстро выяснилось, что эффектность производства тем выше, чем меньше интенсивность тяжелого физического труда, т. е. чем выше механизация производства. Под механизацией понимают замену физического труда человека трудом машин и механизмов. При этом функции управления и контроля остаются за человеком. Понятно, что физиологические возможности человека как управляющей системы не безграничны, поэтому возникли проблемы повышения количества и качества выпускаемых изделий, производительности труда, а также трудности с трудовыми ресурсами и их уровнем подготовки. Таким образом, дальнейшее повышение эффективности производства в условиях увеличения спроса на выпускаемую продукцию связано с внедрением систем, работающих без участия человека. В этом случае человек получает готовый результат технологического процесса без своего непосредственного участия и за ним остаются лишь функции настройки, наблюдения за работой технических устройств и при необходимости передача полученной продукции для дальнейшей обработки или реализации. Устройство, агрегат или техническая система, выполняющие свои функции без участия человека, называются автоматическими. Внедрение в производство каких-либо типов автоматических устройств называется автоматизацией.
Необходимость автоматизации обуславливается следующими основными факторами.
1. Необходимостью осуществить управление опасными производствами, в которых участие человека нежелательно или исключается. Здоровье человека бесценно, и любые затраты здесь оправданны.
2. Стремлением преодолеть ограничения в управлении, которые обуславливаются физиологическими возможностями человека как управляющей системы (быстрота реакции на изменение условий, точность, объективность и т. д.).
3. Стремлением повысить производительность труда и качество продукции.
4. Необходимостью рационально использовать оборудование, энергию и материалы
Первые автоматические регуляторы появились в связи с промышленным применением паровых машин в 1763–1765 г., рис. 1. Так, в паровой машине И.И. Ползунова был впервые использован широко теперь известный поплавковый регулятор уровня воды. В машине Дж. Уатта был применен центробежный регулятор оборотов. Далее до появления электрических машин и приборов автоматические устройства применялись в основном для поддержания заданного режима работы паровых машин и турбин. Применение электрических аппаратов значительно расширило область применения автоматических устройств, так как они более компактны и передача электрических сигналов управления значительно проще, чем механических.
Рис. 1. Развитие технической базы систем автоматического управления
Появление электронных приборов позволило еще более снизить габариты и вес автоматических регуляторов, обеспечивающих заданные алгоритмы управления.
Первый отечественный электронный регулятор появился в 1949 г., а с середины 50-х годов в СССР началась разработка системы ГСП – Государственной системы промышленных приборов и средств автоматизации, задачей которой является создание автоматических и информационно-управляющих систем из стандартных приборов, обладающих совместимостью. Устройства ГСП – это устройства для конкретных функций, т. е. для обеспечения схемной реализации алгоритма управления в типовых автоматических системах. Устройства, входящие в ГСП, представляют собой параметрический ряд (ГОСТ 12997-67 и дополнения) и обладают функциональной, метрологической, конструктивной и эксплуатационной совместимостью. Системы включают в себя устройства для получения первичной информации (измерение каких-либо параметров, например температуры, давления и т.д.) и их преобразования в сигналы, удобные для дальнейшего использования в управлении (чаще всего электрические); устройства передачи информации; регулирующие и вычислительные устройства; устройства отображения информации. Приборы, входящие в ГСП, могут быть разделены на три ветви по виду используемой энергии: электрическая, пневматическая и гидравлическая. Наиболее развита электрическая ветвь. Приборы и средства ГСП работают на основе принятых стандартных сигналов. Из приборов могут быть построены схемы для реализации типовых алгоритмов регулирования, логического управления и т. п. В машиностроении система ГСП используется наряду со специальными автоматическими устройствами, соответствующими специфике той или иной отрасли производства конкретных изделий. Цель системы – снизить затраты на проектирование.
С появлением и внедрением вычислительной техники появилось направление АСУТП – автоматизированные системы управления технологическими процессами, которые предназначены для централизованного управления. Первые системы только облегчали труд оператора центрального пульта управления (информационный и информационно-советующий режимы), а по мере развития направления частично или полностью смогли заменить его (режим непосредственного управления). В этих системах оператор имеет возможность при необходимости в любой момент вмешаться в работу управляющей вычислительной машины, что отражено в названии: не автоматические, а автоматизированные, т. е. не исключающие участие человека. Особенно эффективны АСУТП в энергетике, в химической промышленности, в непрерывных производствах.
Миниатюризация в электронике, появление мини- и микро-ЭВМ позволило продвинуть автоматизацию и в те отрасли машиностроения, где автоматические устройства не давали существенного положительного эффекта из-за необходимости в частой перестройке агрегатов. Мини- и микро-ЭВМ позволили повысить надежность управляющих систем путем резервирования возможностей без существенного увеличения затрат (распределенные системы) и создавать гибкие автоматизированные системы (ГАПы), обеспечивающие безлюдные технологии изготовления типовых деталей и узлов с несколькими видами обработки. В ГАПах автоматизируется подача и обработка деталей и узлов с помощью промышленных роботов, выполняющих функции токаря, сварщика, штамповщика и т. д. Таким образом, появилась возможность круглосуточной работы участка технологической обработки и повышения производительности производства при стабильном качестве. Применение промышленных роботов (ПР), станков с числовым программным управлением (ЧПУ) и ГАПов эффективно при серийном производстве, когда быстро окупаются затраты на перенастройку оборудования. При мелкосерийном производстве затраты на переналадку относительно велики, а при массовом больший эффект обеспечивают автоматические линии.
На сегодняшний день при металлообработке автоматизировать весь процесс изготовления детали или узла чаще всего достаточно сложно и экономически не целесообразно. Поэтому в машиностроении больше распространены так называемые локальные системы автоматизации, обеспечивающие автоматизацию только части общего процесса изготовления изделия. Например, процесс термообработки, транспортировки, штамповки, несложной сборки и т. д. Полная автоматизация более характерна для непрерывных производств: производства нефтепродуктов, электроэнергии и т. д. При частичной автоматизации совместная работа автоматических и других систем координируется человеком. Локальные автоматические системы можно классифицировать по назначению, рис. 2.
Системы защиты и блокировки обеспечивают защиту каких-либо устройств от аварийных режимов, автоматическое отключение при перегрузке, блокировку неисправных устройств. Системы сигнализации предназначены для извещения оператора о состоянии тех или других элементов агрегата или о протекании технологического процесса. Системы контроля и учета могут автоматически контролировать размер детали в процессе обработки, учет количества продукции, измерение и контроль параметров различных процессов.
Рис.2. Классификация автоматических систем по назначению
Системы автоматического управления включают системы регулирования, системы логического управления, т. е. управления на основании логических операций, и более сложные системы оптимального регулирования, последние иногда называют кибернетическими системами.
Системы регулирования решают задачу обеспечения заданных режимов работы различных технических устройств, задачу более узкую и простую, чем управление. Логические системы управляют последовательностью работы отдельных агрегатов. Кибернетические системы решают более сложные задачи, к которым относятся оптимальное регулирование и самонастройка в зависимости от окружающих условий и т. п.
По мере развития материальной базы автоматических систем потребовались расчетные методы, позволяющие определить параметры и спроектировать автоматическую систему без каких-либо экспериментов и затрат на дополнительную защиту ее во время эксплуатации от аварийных режимов и непредсказуемого поведения при изменении внешних условий. Но лишь к 40-м годам двадцатого века окончательно сформировалась прикладная наука автоматика, как раздел фундаментальной науки кибернетики. Автоматика изучает общие принципы построения систем автоматизации и включает в себя теорию технических средств автоматики, теорию автоматического регулирования (ТАР), теорию автоматического управления (ТАУ). Элементы этих курсов объединены под общим названием «Управление техническими системами».