
- •60) Виды компрессорных машин
- •59.Влияние “мертвого” пространства на процесс сжатия в компрессоре.
- •58.Ступенчатое сжатие в поршневом компрессоре. Связь между коэффициентом повышения давления и числом ступеней сжатия в компрессоре.
- •57.Помпаж в динамическом компрессоре.
- •56.Назначение промежуточных холодильников при многоступенчатом сжатии.
- •55) Адиабатическое, изотермическое и политропное сжатие в компрессоре. Отличие по производимой работе.
- •53.Изобразить гидравлическую схему привода реверсивного регулируемого гидронасоса.
- •51.Устройство и принцип действия радиально-поршневого гидромотора.
- •50.Устройство и принцип действия шиберного насоса.
- •49.Устройство и принцип действия радиально-поршневого насоса.
- •48.Устройство и принцип действия аксиально-поршневого насоса.
- •47.Устройство и принцип действия одновинтового насоса.
56.Назначение промежуточных холодильников при многоступенчатом сжатии.
Многоступенчатый компрессор. Применение одноступенчатых компрессоров для получения сжатых газов с весьма высоким давлением нецелесообразно, так как с повышением давления нагнетания объемный КПД и производительность компрессора уменьшаются. Другой причиной ограничения давления сжатия в одной ступени является недопустимость высокой температуры в конце сжатия, которая увеличивается с ростом конечного давления. Повышение температуры газа выше 200°С ухудшает условия смазки (происходит коксование масла) и может привести к самовозгоранию масла.
Для получения сжатого газа более высокого давления (1,0 – 1.2 МПа и выше) применяются многоступенчатые компрессоры с промежуточным охлаждением газа после каждой ступени. Сущность многоступенчатого сжатия может быть пояснена на примере двухступенчатого компрессора, схема которого представлена на рис. 3, а его идеальная (при Vo = 0) индикаторная диаграмма – на рис. 4.
В первой ступени 1 (рис.3 и 4) газ сжимается по политропе 1–2 до давления Р2, а затем он поступает в промежуточный холодильник 3, где охлаждается до начальной температуры T1. Гидравлическое сопротивление холодильника по воздушному тракту делают небольшим. Это позволяет считать процесс охлаждения 2–3 изобарным. После холодильника газ поступает во вторую ступень 2, где сжимается по политропе 3–4 до давления Р3. Если бы сжатие до давления Р3 осуществлялось в идеальном одноступенчатом компрессоре (линия 1–2', рис.4), то величина затраченной за цикл работы определялась бы площадью 012'b0 . При двухступенчатом сжатии с промежуточным охлаждением эта работа численно равна площади 01234b0. Заштрихованная площадь соответствует экономии работы за цикл при двухступенчатом сжатии. Обратите внимание на то, что чем больше ступеней сжатия и промежуточных холодильников, тем ближе будет процесс к наиболее экономичному изотермическому, так как ломанная линия 1–2–3–4 приближается к кривой изотермического сжатия 1–3–5 .
55) Адиабатическое, изотермическое и политропное сжатие в компрессоре. Отличие по производимой работе.
Абсолютное значение работы, затрачиваемой на сжатие 1 кг газа в одноступенчатом идеальном компрессоре (А0) может быть подсчитано так:
А0 = Асж + Анагн - Авсас = ò Рdv + Р2 v2 - Р1 v1 . (17.2)
По смыслу работы А0, Асж, Анагн являются отрицательными, а работа процесса всасывания Авсас - положительной, так как на ее совершение энергия не затрачивается (трение отсутствует), и сопротивление воздуха, находящегося справа под поршнем при ходе всасывания, не учитывается, ибо не принимается также во внимание положительная работа этого воздуха при сжатии и нагнетании. В зависимости от характера процесса сжатия ò Рdv имеет значения: для изотермического процесса: Ат = Р1 v1ln(Р1/Р2); для адиабатного процесса: Аад = 1/(b – 1)(P1 v1 – Р2 v2); для политропного процесса: Апол = 1/(n – 1)(Р1 v1 – Р2 v2). Тогда теоретическая работа компрессора затрачиваемая на сжатие 1 кг газа, при изотермическом процессе сжатия выразится равенством:
Ат0 = Р1 v1ln(Р2/Р1); (17.3)
при адиабатическом процессе сжатия:
Аад0 = b/(b – 1)P1 v1[(Р2/Р1) (b - 1)/b – 1]; (17.4)
при политропном процессе сжатия:
Апол0 = n/(n – 1)Р1 v1[(Р2/Р1) (n - 1)/n – 1]; (17.5)
При уменьшении производительности компрессора с увеличением давления сжатого воздуха и ухудшении при этом условий смазки из-за повышения температуры Т2 одноступенчатый компрессор становится непригодным для получения сжатого газа высокого давления. Обычно одноступенчатые компрессоры применяют для получения сжатого газа давлением не выше 0,8—1 МПа. При необходимости иметь сжатый газ более высокого давления используют многоступенчатые компрессоры.
Как следует из рис.3.1 и сопоставления формул (3.1), (3.2) и (3.3), наименьшая суммарная работа затрачивается при изотермическом сжатии газа. Кроме того, вследствие постоянства температуры в этом процессе создаются благоприятные условия для смазки.
В
действительных компрессорах получить
изотермическое сжатие практически
невозможно, однако, стремятся максимально
приблизиться к нему т.е. вести процесс
сжатия с показателем политропы
(отвод
тепла). Поэтому при определении
эффективности охлаждаемых поршневых
компрессоров величина действительной
работы сравнивается с изотермической.
Отношение их дает изотермический КПД
(
).