
- •1. Способы акустического контакта с объектом контроля и особенности сканирования объектов. Достижение стабильного акустического контакта.
- •2. Физический смысл и взаимосвязь основных величин, характеризующих акустические волны. Закон Гука и его место в акустике.
- •3. Волновое уравнение для бегущих и стоячих волн. Интенсивность и энергия звуковых волн.
- •4. Продольные, поперечные и поверхностные волны. Способы их возбуждения и скорости распространения.
- •5. Нормальные волны. Особенности возбуждения и распространения.
- •6. Отражение и преломление акустических волн на границах раздела сред. Трансформация волн. Критические углы.
- •Коэффициенты отражения и прохождения по амплитуде
- •7. Отражение и прохождение акустических волн при нормальном падении на границу двух сред, разделенных тонким слоем. Просветление границы.
- •8. Отражение от свободной границы твердого тела. Обменные
- •9. Механизм затухания волн в различных средах. Поглощение и рассеяние волн, их зависимость от структуры среды и частоты колебаний.
- •10. Дифракция и поляризация акустических волн.
- •11. Физическая сущность пьезоэффекта. Электрические, механические и пьезоэлектрические свойства пьезоматериалов.
- •12. Основные характеристики преобразователей и способы их определения.
- •13. Структура пьезопреобразователей и назначение отдельных элементов. Классификация преобразователей.
- •14. Особенности и характеристики фокусирующих преобразователей.
- •15. Широкополосные преобразователи (конструктивные особенности, характеристики, способы расширения полосы пропускания частот).
- •16. Устройство, принцип действия и возможности эма-преобразователей.
- •17. Коэффициенты преобразования, способы их повышения.
- •18. Акустическое поле дискового преобразователя.
- •19. Особенности расчета акустического поля преобразователя через мнимый излучатель (прямых и наклонных).
- •20. Классификация и физическая сущность основных методов акустического контроля. Преимущества и недостатки акустического контроля, области применения.
- •21. Физические основы эхо-метода контроля. Электроакустический тракт дефектоскопа.
- •22. Основные типы искусственных дефектов. Расчет акустического тракта. Ард-диаграммы и их применение.
- •23. Характеристики эхо-метода контроля: глубина прозвучивания, мертвая зона, разрешающая способность. Способы улучшения характеристик.
- •24. Чувствительность эхо-метода контроля и способы ее повышения.
- •25. Структура и принцип действия эхо-импульсного дефектоскопа (требования к узлам).
- •26. Особенности повышения чувствительности эхо-метода при высоком уровне помех.
- •27. Помехи при эхо-методе контроля и способы их уменьшения.
- •28. Способы определения координат и оценка размеров и формы дефектов при эхо-методе контроля
- •29. Теневой метод контроля. Физические основы метода. Оценка изменения уровня сигнала в зависимости от величины дефекта и параметров объекта контроля.
- •30. Особенности аппаратуры для реализации теневых методов контроля. Помехи при теневом контроле и способы их уменьшения.
- •31. Зеркально-теневой метод контроля. Схемы прозвучивания. Оценка результатов контроля.
- •33. Погрешности эхо-импульсных толщиномеров и способы их уменьшения.
- •34. Источники появления волн акустической эмиссии и параметры эмиссии. Метод контроля с использованием аэ.
- •35. Особенности аппаратуры для регистрации аэ. Применение метода аэ при испытаниях и эксплуатации изделий, при контроле процессов сварки, резания.
- •36. Особенности акустического контроля неметаллических и композиционных многослойных конструкций. Сущность, аппаратура и область применения метода свободных колебаний.
- •37. Импедансный метод контроля. Основы метода, аппаратура, возможности и область применения.
- •38. Велосимметрический и акустико-топографический методы контроля. Основы методов, аппаратура, возможности и область применения.
- •39. Акустический контроль физико-механических характеристик материалов (твердость, прочность). Особенности методики и аппаратуры.
- •40. Особенности акустического контроля физико-механических характеристик объектов по изменению скорости и затуханию волн (структура металлов, коррозия).
- •41. Акустический контроль поверхностных характеристик материалов (шероховатость, поверхностно упрочненные слои).
- •42. Методика настройки дефектоскопа по стандартным и контрольным образцам при контроле различных объектов.
- •43. Измеряемые характеристики и признаки дефектов.
- •44. Методы распознавания типа дефектов (по условным размерам, по коэффициенту формы).
- •45. Методы распознавания типа дефектов (по параметрам трансформированных и дифрагированных волн).
- •46. Методы визуализации акустических полей: особенности, разрешение, аппаратура.
- •47. Бесконтактные методы возбуждения и приема акустических волн.
4. Продольные, поперечные и поверхностные волны. Способы их возбуждения и скорости распространения.
В жидкостях и газах, которые не обладают упругостью формы, могут распространяться только продольные волны (растяжения - сжатия). Колебания частиц происходят в направлении распространения волны, а фазовая скорость распространения волны определяется выражением
,
(1.24)
где К - модуль всестороннего сжатия.
В неограниченных изотропных твердых телах существует два типа волн: волны расширения или продольные и волны сдвига или поперечные. В сдвиговых волнах движение частиц перпендикулярно направлению распространения волны, а деформация является чистым сдвигом.
Для безграничной cреды скорости распространения этих волн определяются упругими постоянными
(1.25)
(1.26)
В рассматриваемой среде распространение упругих волн имеет пространственный характер и в зависимости от формы фронта волны могут быть плоскими, сферическими и цилиндрическими. Их особенность - независимость фазовой и групповой скоростей от амплитуды и геометрии волны. Схемы сечений волновых поверхностей приведены на рис.1.4.
Отношение
скоростей продольной и поперечной волн
зависит только от значения коэффициента
Пуассона cреды
:
например в металлах, где 0,3,
отношение
.
Продольные и поперечные волны (объемные волны) наиболее широко используются для НК материалов и изделий. Эти волны лучше всего выявляют дефекты при нормальном падении на их поверхность.
В ограниченных твердых телах кроме объемных существуют другие типы волн. Вдоль свободной поверхности твердого тела могут распространяться поверхностные волны, которые являются линейной комбинацией продольной и поперечной волн.
Простейшими и наиболее часто встречающимися поверхностными волнами являются волны Рэлея. Фазовая скорость этих волн определяется выражением
(1.27)
Например для металлов ( 0,3) cs 0,9ct.
Данные волны способны распространяться на большие расстояния по поверхности твердого тела. Энергия их локализована в поверхностном слое толщиной - 2. При распространении волны частицы тела движутся, вращаясь по эллипсам, большая ось w которых перпендикулярна границе, а малая u параллельна направлению распространения. Графическое изображение этой волны приведено на рис.1.5. Волны, подобные рэлеевским, могут распространяться не только вдоль плоских, но и вдоль искривленных поверхностей, правда с большим затуханием.
На границе твердое тело - жидкость возможно распространение затухающей и незатухающей волн рэлеевского типа (рис.1.6, а). Затухающая волна рэлеевского типа при распространении непрерывно излучает энергию в жидкость, образуя в ней отходящую от границы неоднородную волну. При распространении незатухающей волны ее энергия и движение частиц локализованы в основном в жидкости.
На границе двух твердых сред, схожих по плотности и модулям упругости, может распространяться поверхностная волна Стонли (рис.1.7, а). Эта волна состоит как бы из двух рэлеевских волн (по одной в каждой среде). Фазовая скорость волн Стонли меньше значений cl ct в обеих граничных средах.
На границе твердого полупространства с твердым слоем существуют волны с горизонтальной поляризацией - волны Лява (рис.1.7, б). Эти волны чисто поперечные: в них имеется только одна компонента смещения v, а упругая деформация в волне представляет собой чистый сдвиг.
а) б)
Рисунок 1.7 – Схематическое представление волн Стонли (а) и волн Лява (б).
Рис.1.8 Акустическое поле преобразователя головной волны
Кроме вытекающей возбуждается также головная волна (рис. 1.8), получившая широкое применение в практике УЗ-контроля. Головной называют продольно-подповерхностную волну, возбуждаемую при падении УЗ - пучка на границу раздела под углом, близким к первому критическому. Скорость этой волны равна скорости продольной волны. Своего амплитудного значения головная волна достигает под поверхностью вдоль луча с углом ввода 78°. Головная волна, как и вытекающая, порождает боковые поперечные волны под третьим критическим углом к границе раздела. Одновременно с возбуждением продольно-поверхностной волны образуется и обратная продольно-поверхностная волна - распространение упругого возмущения в сторону, противоположную прямому излучению. Ее амплитуда примерно в 100 раз меньше амплитуды прямой волны. Головная волна нечувствительна к неровностям поверхности и реагирует лишь на дефекты, залегающие под поверхностью. Ослабление амплитуды продольно-подповерхностной волны вдоль луча любого направления происходит как в обычной объемной продольной волне, то есть пропорционально 1/r