Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_gidravlika.doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
888.83 Кб
Скачать

17. Виды гидравлических сопротивлений (потерь)

Потери удельной энергии в потоке жидкости, безусловно, связаны с вязкостью жид­кости, но сама вязкость - не единственный фактор, определяющий потери напора. Но можно утверждать, что величина потерь напора почти всегда пропорциональны квадрату средней скорости движения жидкости. Эту гипотезу подтверждают результаты большин­ства опытных работ и специально поставленных экспериментов. По этой причине потери напора принято исчислять в долях от скоростного напора (удельной кинетической энергии потока). Тогда:

Потери напора принято подразделять на две категории:

потери напора, распределённые вдоль всего канала, по которому перемеща­ется жидкость (трубопровод, канал, русло реки и др.), эти потери пропорцио­нальны длине канала и называются потерями напора по длине сосредоточенные потери напора: потери напора на локальной длине потока (достаточно малой по сравнению с протяжённостью всего потока). Этот вид потерь во многом зависит от особенностей преобразования параметров пото­ка (скоростей, формы линий тока и др.). Как правило, видов таких потерь до­вольно много и их расположение по длине потока зачастую далеко не зако­номерно. Такие потери напора называют местными потерями или потерями напора на местных гидравлических сопротивлениях. Это вид потерь напора

также принято исчислять в долях от скоростного напора

Тогда полные потери напора можно представить собой как сумму всех видов потерь напора:

Оценка величины местных потерь напора практически всегда базируются на резуль­татах экспериментов, по результатам таких экспериментов определяются величины коэф­фициентов потерь. Для вычисления потерь напора по длине имеются более или менее на­дёжные теоретические предпосылки, позволяющие вычислять потери с помощью при­вычных формул.

20. Режимы течения жидкости. Число Рейнольдса

При движении вязкой жидкости различаются два режима - ламинарный и турбулентный.Ламинарный поток имеет слоистую структуру - частицы жидкости дви­жутся с различными скоростями параллельно оси трубы без перемешива­ния и без пульсаций скорости и давления.Турбулентный поток характеризуется неупорядоченным движением частиц жидкости. Наряду с основным поступательным перемещением частиц жидкости вдоль трубы наблюдаются хаотичные поперечные перемеще­ния и вращательные движения частиц, которые приводят к интенсивному перемешиванию жидкости. Кроме того, в каждой точке турбулентного потока наблюдаются пульсации скорости и давления.Опытами установлено, что переход от ламинарного движения к тур­булентному происходит внезапно, скачкообразно, при определенном зна­чении безразмерного параметра. Данный безразмерный параметр получил название числа Рейнольдса:

Здесь u - средняя скорость потока, м/с;

d - диаметр трубы, м;

n - кинематическая вяз­кость жидкости, м2.

Для каждой конкретной установки существует некоторый диапазон значений числа Re, которые можно рассматривать как критические значения Reкр, при которых и происходит смена режимов движения. На значение критического числа Рейнольдса существенное влияние оказывают различные возмущения, возникающие в потоке вследствие особенностей структуры течения до входа в трубу и при входе (сужение потока и т.п.).

Необходимо иметь в вицу, что переход ламинарного движения к турбу­лентному удается задержать до достижения весьма больших значений Re, в то время как восстановление ламинарного движения при переходе к нему от турбулентного осуществляется при относительно малых значе­ниях Re. В практике гидравлических расчетов именно это малое зна­чение Re и принимают за Reкр.

При движении жидкости в круглых трубах принимают Reкр = 2320. Таким образом, при Re < Reкр в потоке сохраняется ламинарный ре­жим, а при Re > Reкр - турбулентный. Переход ламинарного режима в турбулентный происходит при увеличении скорости потока (расхода), а также при уменьшении вязкости жидкости и поперечных размеров потока (при постоянном расходе).

Если в начале и конце трубы установить пьезометры, то разность пьезометрических напоров h1 в начале и h2 в конце трубы покажет величину потери напора на трение hl при движении на расстояние l между сечениями 1-1 и 2-2

Зависимость гидравлических потерь на трение от скорости потока имеет вид:

(2)

где a - коэффициент пропорциональности;

n - показатель степени.

При ламинарном режиме потери на трение пропорциональны средней скорости потока (n=1). При турбулентном режиме с увеличением числа Рейнольдса показатель степени в формуле (2) возрастает от n=1,75 до n=2. Нижний предел этого интервала соответствует области сопротивления гидравлически гладких труб, верхний предел - квадратичному закону сопротивления (гидравлически шероховатым трубам). Промежуточные значения характеризуют переходную область сопротивления.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]