Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
statistika_spory.doc
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
935.94 Кб
Скачать
            1. Понятие об ошибках выборки. Виды ошибок.

Ошибки выборки

Чтобы оценить степень точности выборочного наблюдения, необходимо оценить величину ошибок, которые могут возникнуть в процессе проведения выборочного наблюдения.

Основное внимание уделяется случайным ошибкам репрезентативности.

Средняя ошибка выборки

Мерой колеблемости возможных значений выборочной средней является средний квадрат отклонений вариантов выборочной средней от генеральной, взвешенной по их вероятностям, т.е. дисперсия выборочной средней.

Отсюда видно, что средняя ошибка выборки прямо пропорциональна среднему квадратическому отклонению и обратно пропорциональна квадратному корню из численности выборки.

Если выборка используется для определения доли признака, то средняя ошибка выборки определяется по следующей формуле:

Когда значение и значение неизвестны, то значение принимается равным .

Предельная ошибка выборки

Средняя ошибка выборки используется для определения возможных отклонений показателей выборочной совокупности от соответствующих показателей генеральной совокупности.

С определенной вероятностью можно утверждать, что эти отклонения не превысят заданной величины , которая называется предельной ошибкой выборки.

– коэффициент, зависящий от вероятности, с которой можно гарантировать определенные размеры предельной ошибки выборки. Применительно к выборочному методу из теоремы Черышева следует, что с увеличением значений величина вероятности быстро приближается к единице.

В связи с этим, увеличивая численность выборки, можно отклонение выборочной средней от генеральной довести до сколь угодно малых размеров, причем это результат можно гарантировать с вероятностью сколь угодно близкой к единице.

  1. Определение средней и предельной ошибки выборки. Доверительные пределы для генеральной средней и для генеральной доли.

Сущность предельных теорем состоит в том, что в массовых явлениях совокупное влияние различных случайных причин на формирование закономерностей и обобщающих характеристик будет сколь угодно малой величиной или практически не зависит от случая. Поскольку случайная ошибка выборки возникает в результате случайных различий между единицами выборочной и генеральной совокупностей, то при достаточно большом объеме выборки она будет сколь угодно мала.

Предельные теоремы теории вероятностей позволяют определять размер случайных ошибок выборки. Различают среднюю (стандартную) и предельную ошибку выборки. Под средней (стандартной) ошибкой выборки понимают такое расхождение между средней выборочной и генеральной совокупностью ( ), которое не превышает ±Δ.

Обозначения основных характеристик параметров генеральной и выборочной совокупности приведены в таблице 8.1.

Таблица 8.1

Основные характеристики генеральной и выборочной совокупностей

Характеристика

Генеральная совокупность

Выборочная совокупность

Объем совокупности (численность единиц)

N

n

Численность единиц, обладающих обследуемым признаком

М

m

Доля единиц, обладающих обследуемым признаком

р= M / N

w = m / n

Средний размер признака

Дисперсия признака

Дисперсия доли

Примечание. q — доля единиц, не обладающих обследуемым признаком.

Предельной ошибкой выборочного наблюдения называется разность между величиной средней в генеральной совокупности и ее величиной, вычисленной по результатам выборочного наблюдения:

. (8.1)

В курсах математической статистики доказано, что величина предельной ошибки выборки не должна превышать соотношения:

, (8.2)

где величина μ называется средним квадратическим отклонением выборочной средней от генеральной средней и (средняя ошибка выборки) определяется по зависимости:

, (8.3)

где — среднее квадратическое отклонение в генеральной совокупности;

n — число наблюдений.

t — коэффициент доверия, параметр, указывающий на конкретное значение вероятности того, на какую величину генеральная средняя будет отличаться от выборочной средней.

Как правило, именно произведение коэффициента доверия на среднюю ошибку выборки и рассматривают в качестве предельной ошибки, что является более строгим и правильным, а разность генерального и выборочного среднего рассматривают просто как ошибку выборки, являющуюся случайной величиной.

В некоторых случаях величину называют также средней ошибкой выборки и также обозначают μ.

Соотношение между дисперсиями генеральной и выборочной совокупности выражается формулой:

. (8.4)

Поскольку величина n / n - 1 при достаточно больших n близка к 1, то можно приближенно считать, что выборочная и генеральные дисперсии равны.

Составлены специальные таблицы, связывающие коэффициент доверия t с вероятностью того, что разность между выборочной и генеральной средними не превысит значения средней ошибки выборки μ:

   (8.5)

Из первой строки видно, что с вероятностью 0,683 можно утверждать, что разность между выборочной и генеральной средними не превысит одной величины средней ошибки выборки. Другими словами, в 68,3% случаев ошибка репрезентативности не выйдет за пределы ±μ. Далее видно, что чем больше пределы, в которых допускается возможная ошибка, тем с большей вероятностью (т.е. более достоверно) судят о ее величине.

Доверительный интервал. Зная выборочную среднюю величину признака и предельную ошибку выборки , в уточненном только что смысле можно рассчитать границы (пределы), в которых заключена генеральная средняя:

, (8.6)

определяющие доверительный интервал.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]