
- •Оглавление
- •Глава I. Основные понятия математического моделирования социально-экономических систем 5
- •Глава 2. Методы и модели линейного программирования 15
- •Глава 3. Балансовые модели 120
- •Введение
- •Глава I. Основные понятия математического моделирования социально-экономических систем
- •1.1. Социально-экономические системы, методы их исследования и моделирования
- •1.2. Этапы экономико-математического моделирования
- •1. Постановка экономической проблемы и ее качественный анализ.
- •2. Построение математической модели.
- •3. Математический анализ модели.
- •4. Подготовка исходной информации.
- •5. Численное решение.
- •6. Анализ численных результатов и их применение.
- •1.3. Классификация экономико-математических методов и моделей
- •Глава 2. Методы и модели линейного программирования
- •2.1. Общая задача линейного программирования
- •Контрольные вопросы
- •2.2. Постановка задач коммерческой деятельности
- •2.2.1. Коммерческая деятельность предприятия
- •Построение экономико-математической модели задачи.
- •2.2.2. Планирование товарооборота
- •2.2.3. Производственная задача
- •2.2.4. Формирование рациональных смесей
- •Построение экономико-математической модели задачи.
- •2.2.5. Перевозка грузов
- •2.2.6. Задача о назначениях
- •2.2.7. Формирование торговой сети
- •Построение экономико-математической модели задачи.
- •2.2.8. Выбор портфеля ценных бумаг
- •Построение экономико-математической модели задачи.
- •2.2.9. Построение кольцевых маршрутов
- •Контрольные вопросы
- •2.3. Решение задач коммерческой деятельности предприятия с помощью программы ms Excel
- •2.4. Методы решения задач коммерческой деятельности предприятия
- •2.4.1. Геометрический метод решение задач
- •Pиc. 2 Определение экстремальных значений целевой функции
- •Контрольные вопросы
- •2.4.2. Алгебраический симплексный метод
- •2.4.3. Метод искусственного базиса
- •2.4.4. Метод Гомори. Целочисленное решение
- •Контрольные вопросы
- •2.5. Двойственные задачи линейного программирования
- •2.5.1. Построение двойственной задачи
- •2.5.2. Теоремы двойственности
- •2.5.3. Анализ устойчивости двойственных оценок
- •Контрольные вопросы
- •2.6. Двойственный симплексный метод
- •Составим экономико-математическую модель задачи
- •Контрольные вопросы
- •2.7. Метод потенциалов
- •Контрольные вопросы
- •2.8. Анализ устойчивости коммерческой деятельности предприятия
- •Глава 3. Балансовые модели
- •3.1. Балансовый метод. Принципиальная схема межпродуктового баланса
- •3.2. Экономико-математическая модель межотраслевого баланса
- •3.3. Коэффициенты прямых и полных материальных затрат
- •3.4. Межотраслевые балансовые модели в анализе экономических показателей
- •3.5. Динамическая межотраслевая балансовая модель
- •Вопросы и задания
- •Рекомендуемая литература
3.2. Экономико-математическая модель межотраслевого баланса
В п. 3.1. отмечено, что основу информационного обеспечения модели межотраслевого баланса составляет технологическая матрица, содержащая коэффициенты прямых материальных затрат на производство единицы продукции. Эта матрица является также основой экономико-математической модели межотраслевого баланса. Предполагается, что для производства единицы продукции в j-й отрасли требуется определенное количество затрат промежуточной продукции i-й отрасли, равное . Оно не зависит от объема производства в отрасли и является довольно стабильной величиной во времени. Величины называются коэффициентами прямых
материальных затрат и рассчитываются следующим образом:
.
(3.4)
Определение 1. Коэффициент прямых материальных затрат показывает, какое количество продукции i-й отрасли необходимо, если учитывать только прямые затраты, для производства единицы продукции j-й отрасли.
С учетом формулы (3.4) систему уравнений баланса (3.2) можно переписать в виде
.
(3.5)
Если ввести в рассмотрение матрицу коэффициентов прямых материальных затрат А=( ), вектор-столбец валовой продукции X и вектор-столбец конечной продукции Y:
,
,
то система уравнений (3.5) в матричной форме примет вид
X=AX+Y. (3.6)
Система уравнений (3.5), или в матричной форме (3.6), называется экономико-математической моделью межотраслевого баланса (моделью Леонтьева, моделью «затраты — выпуск»). С помощью этой модели можно выполнять три варианта расчетов:
• Задав
в модели величины валовой продукции
каждой отрасли (
),
можно
определить объемы конечной продукции
каждой отрасли (
):
Y = (E -A)X. (3.7)
• Задав величины конечной продукции всех отраслей ( ), можно определить величины валовой продукции каждой отрасли ( ):
X
=
(Е - А )
Y
.
(3.8)
• Для ряда отраслей задав величины валовой продукции, а для всех остальных отраслей задав объемы конечной продукции, можно найти величины конечной продукции первых отраслей и объемы валовой продукции вторых, в этом варианте расчета удобнее пользоваться не матричной формой модели (3.6), а системой линейных уравнений (3.5).
В формулах (3.7) и (3.8) Е обозначает единичную матрицу n-го порядка, а (Е - А) обозначает матрицу, обратную к матрице (Е - А). Если определитель матрицы (Е - А) не равен нулю, т.е. эта матрица невырожденная, то обратная к ней матрица существует. Обозначим эту обратную матрицу через В=(Е - А) , тогда систему уравнений в матричной форме (3.8)можно записать в виде
X = BY. (3.8')
Элементы
матрицы В
будем
обозначать через
,
тогда
из матричного уравнения (3.8') для любой
i-й
отрасли можно получить следующее
соотношение:
.
(3.9)
Из соотношений (3.9) следует, что валовая продукция выступает как взвешенная сумма величин конечной продукции, причем весами являются коэффициенты , которые показывают, сколько всего нужно произвести продукции i-й отрасли для выпуска в сферу конечного использования единицы продукции j-й отрасли. В отличие от коэффициентов прямых затрат коэффициенты называются коэффициентами
полных материальных затрат и включают в себя как прямые, так и косвенные затраты всех порядков. Если прямые затраты отражают количество средств производства, израсходованных непосредственно при изготовлении данного продукта, то косвенные относятся к предшествующим стадиям производства и входят в производство продукта не прямо, а через другие (промежуточные) средства производства.
Определение 2. Коэффициент полных материальных затрат показывает, какое количество продукции i-й отрасли нужно произвести, чтобы с учетом прямых и косвенных затрат этой продукции получить единицу конечной продукции j-й отрасли.
Коэффициенты полных материальных затрат можно применять, когда необходимо определить, как скажется на валовом выпуске некоторой отрасли предполагаемое изменение объемов конечной продукции всех отраслей:
,
(3.10)
где
и
—
изменения (приросты) величин валовой и
конечной продукции соответственно.