Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Bilety_fizika_1.doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
5.77 Mб
Скачать

3.Операторы физических величин.

Оператор физической величины — линейный оператор, используемый в квантовой механике для представления какой-либо измеримой физической величины (наблюдаемой). Операторы величин в квантовой механике являются эрмитовыми.

Можно сказать, что, с математической точки зрения, основной смысл каждого оператора состоит в том, что он может действовать на вектор и давать в результате другой вектор. В таком случае, в квантовой механике операторы используются не по прямому назначению.

В квантовой механике используется математическое свойство линейных операторов, заключающееся в том, что каждый из них имеет собственные векторы и собственные значения.

Примеры

Билет2

1.Проблема теплового излучения.

Тепловое излучение – электромагнитное излучение, это наиболее распространённый и общий вид излучения, происходящий за счёт внутренней энергии тел. Примером теплового излучения является свет.

Энергия светимости тел – поток энергии, излучаемый единицей поверхности тела по всем направлениям:

Тело излучает волны различной частоты w (длины волны λ=2πс/w), поток энергий с единицы поверхности, уносимой волнами с частотами, лежащими в интервале (w, w+dw):

; где rwt – испускательная способность тела, w – частота.

Тела не только испускают волны, а также поглощают их. Пусть на элементарную площадку тела падает поток энергетических волн с частотами (w, w+dw), равный dФ, поглощается из этой энергии d’Ф, поглощательная способность тела: .

Абсолютно чёрное тело – тело, поглощающее абсолютно всё падающее излучение, =1.

Закон Киргофа: отношение испускательной способности к поглощательной не зависит от природы излучения и для всех тел описывается одной и той же функцией – универсальной функцией Киргофа: .Основная проблема теории теплового излучения и заключалась в нахождении этой функции.

2.Квантование.

Некоторые физические величины, относящиеся к микрообъектам, изменяются не непрерывно, а скачкообразно. О величинах, которые могут принимать только вполне определенные, то есть дискретные значения говорят, что они квантуются. В 1900 г. немецкий физик М. Планк, изучавший тепловое излучение твердых тел, пришел к выводу, что электромагнитное излучение испускается в виде отдельных порций - квантов - энергии. Значение одного кванта энергии равно: E = hv,где E - энергия кванта, Дж; v - частота, с-1; h - постоянная Планка (одна из фундаментальных постоянных природы), равная 6,626·1034 Дж·с. Кванты энергии впоследствии назвали фотонами. Идея о квантовании энергии позволила объяснить происхождение линейчатых атомных спектров, состоящих из набора линий, объединенных в серии.Первая квантовая теория строения атома была предложена Н. Бором. Он считал, что в изолированном атоме электроны двигаются по круговым стационарным орбитам, находясь на которых, они не излучают и не поглощают энергию. Каждой такой орбите отвечает дискретное значение энергии. Переход электрона из одного стационарного состояния в другое сопровождается излучением кванта электромагнитного излучения, частота которого равна v = E / h,где E - разность энергий начального и конечного состояний электрона, h - постоянная Планка.Дискретность энергии электрона является важнейшим принципом квантовой механики. Электроны в атоме могут иметь лишь строго определенные значения энергии. Им разрешен переход с одного уровня энергии на другой, а промежуточные состояния запрещены.

Билет3

1.Фотоэффек

Фотоэффектом называется явления вырывания электронов с поверхности металла под действием света.Законы фотоэффекта:

1) максимальная начальная скорость фотоэлектронов определяется частотой падающего излучения;

2) для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота или максимальная длина волны, ниже которой фотоэффект не наблюдается;

3) число фотоэлектронов, вырвавшихся из катода за единицу времени пропорционально падающему световому потоку.Закон сохранения энергии для фотоэффекта: ,

2.Состояние частицы в квантовой теории

Билет4

1.Опыт Боте.

Тонкая металлическая фольга помещалась между двумя газоразрядными счетчиками. Фольга освещалась слабым пучком рентгеновских лучей, под действием к-рых она сама становилась источником рентгеновских лучей(явление рентгеновской флуорисценции). Вследствие малой интенсивности первичного пучка кол-во квантов, испускаемых фольгой было невелико. При попадании на счетчик вторичных рентгеновских лучей с фольги, он срабатывал и приводил в действие особый механизм, делавший отметку на движущейся ленте. Если бы излучаемая энергия распространялась равномерно во все стороны, как это следует из волновых представлений, оба счетчика должны были бы срабатывать одновременно и отметки на ленте приходились бы одна против другой.В действительности наблюдалось совершенно беспорядочное расположение отметок, это можно объяснить только тем, что в отдельных процессах испускания возникают световые частицы, летящие то в одном, то в другом направлениях - фотоны.Масса фотона m=hc/лянду,импульс фотона p=hv/c.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]