- •2. Способы получения энергии бактериями (дыхание, брожение). Методы культивирования и выделение чистой культуры анаэробов.
- •3.Рост и размножение бактерий. Фазы размножения бактерий в замкнутой среде (периодическая культура). Непрерывное культивирование. Промышленное культивирование бактерий.
- •4. Основные принципы культивирования бактерий. Аппаратура для культивирования микроорганизмов. Культуральные свойства бактерий
- •5 .Искусственные питательные среды, их классификация . Требования.
- •6. Принципы и методы выделения чистых культур аэробных бактерий.
- •7. Международная классификация и характеристика ферментов бактерий. Методы определения гликолитических и протеолитических ферментов бактерий. Идентификация бактерий по ферментативной активности
- •8. Механизмы действия на микроорганизмы химических веществ
- •9 Действие физических факторов на микроорганизмы ( температура, высушивание,свет, ультразвук, радиация). Стерилизация: методы, аппаратура,контроля режима стерилизации.
- •10Антибиотики: классификация по источнику получения, способу получения, по химической структуре, по механизму и спектру действия.
- •11Механизмы антибиотикорезистентности возбудителей инфекционных заболеваний. Пути преодоления устойчивости бактерий к антибиотикам
6. Принципы и методы выделения чистых культур аэробных бактерий.
Методы выделения чистых культур аэробов. Процесс выделения чистой культуры можно разделить на несколько этапов. Первый этап. Из исследуемого материала готовят мазок, окрашивают его по Граму или другим методом и микрсгскопиру-ют. Для посева исследуемый материал в случае необходимости разводят в пробирке со стерильным изотоническим раствором хлорида натрия. Одну каплю приготовленного разведения нано¬сят петлей на поверхность питательного агара в чашку Петри и тщательно втирают шпателем в среду, равномерно распределяя материал по всей ее поверхности. После посева чашку перевора¬чивают дном кверху, подписывают и помещают в термостат при температуре 37 °С на 18—24 ч. Второй этап. Просматривают чашки и изучают изолиро¬ванные колонии, обращая внимание на их форму, величину, кон¬систенцию и другие признаки. Для определения морфологии кле¬ток и их тинкториальных свойств из части исследуемой колонии готовят мазок, окрашивают по Граму и микроскопируют. Для выделения и накопления чистой культуры одну изолированную колонию или несколько различных изолированных колоний пе¬ресевают в отдельные пробирки со скошенным агаром или какой-либо другой питательной средой. Для этого часть колонии сни-мают петлей, не задевая соседние колонии. Третий этап: Отмечают характер роста выделенной чис¬той культуры. Визуально чистая культура характеризуется однородным ростом. При микроскопическом исследовании окрашен¬ного мазка, приготовленного из такой культуры, в нем обнару¬живаются морфологически и тинкториально однородные клетки. Очнако в случае выраженного полиморфизма, присущего неко¬торым видам бактерий, в мазках из чистой культуры наряду с типичными встречаются и другие формы клеток. Для того, чтобы выделить чистую культуру микроорганизмов, следует отделить многочисленные бактерии, которые находятся в материале, одна от другой. Это можно достичь с помощью методов, которые основаны на двух принципах – механическом и биологическом разобщении бактерий.
Механический принцип |
Биологический принцип |
МЕТОДЫ 1. Фракционных разведений Л. Пастера 2. Пластинчастых разведений Р. Коха 3. Поверхностных посевов Дригальського 4. Поверхностных штрихов |
МЕТОДЫ Принимают во внимание: а - тип дыхания (метод Фортнера); б - подвижность (метод Шукевича); в - кислотоустойчивость; г - спорообразование; д - температурный оптимум; е - избирательную чувствительность лабораторных животных к бактериям
|
7. Международная классификация и характеристика ферментов бактерий. Методы определения гликолитических и протеолитических ферментов бактерий. Идентификация бактерий по ферментативной активности
Согласно разработанной комиссией по ферментам Международного биохимического союза классификации, они подразделяются на шесть главных классов. Оксидоредуктазы — это ферменты, катализирующие окислительно-восстановительные реакции. Они играют большую роль в процессах биологического получения энергии. К ним относятся дегидрогеназы (НАД, НАДФ, ФАД), цитохромы (Ь, с, сь а, а), ферменты, участвующие в переносе водорода, электронов и кислорода, и др. Трансферазы катализируют перенос отдельных радикалов, частей молекул или целых атомных группировок от одних соединений к другим. Например, ацетилтрансферазы переносят остатки уксусной кислоты — СН3СО, а также молекул жирных кислот; фосфотрансферазы, или киназы, обусловливают перенос остатков фосфорной кислоты Н2Р 0 3 2 _. Известны многие другие трансферазы (аминотрансферазы, фосфорилазы и т. д.). Гидролазы катализируют реакции расщепления и синтеза таких сложных соединений, как белки, жиры и углеводы, с участием воды. К этому классу относятся протеолитические ферменты (или пептидгидролазы), действующие на белки или пептиды; гидролазы глюкозидов, осуществляющие каталитическое расщепление углеводов и глюкозидов (р-фруктофуранозидаза, а-глюкозидаза, а- и р-амилаза, р-галактозидаза и др.); эстеразы, катализирующие расщепление и синтез сложных эфиров (липазы, фосфатазы). Лиазы включают в себя ферменты, катализирующие отщепление от субстратов определенных химических групп с образованием двойных связей или присоединение отдельных групп или радикалов к двойным связям. Так, пируватдекарбоксилаза катализирует отщепление С02 от пировиноградной кислоты. К лиазам относится также фермент альдолаза, расщепляющий шестиуглеродную молекулу фруктозо-1,6-дифосфата на два трех-углеродных соединения. Альдолаза имеет большое значение в процессе обмена веществ. Изомеразы осуществляют превращение органических соединений в их изомеры. При изомеризации происходит внутримолекулярное перемещение атомов, атомных группировок, различных радикалов и т. п. Изомеризации подвергаются углеводы и их производные, органические кислоты, аминокислоты и т. д. Ферменты этой группы играют большую роль в ряде процессов метаболизма. К ним относятся триозофосфатизомераза, глюкозофосфатизомера-за и др. Лигазы катализируют синтез сложных органических соединений из простых. Например, аспарагинсинтетаза осуществляет синтез амида аспарагина из аспарагиновой кислоты и аммиака с обязательным участием аденозинтрифосфорной кислоты (АТФ), дающей энергию для этой реакции. К группе лигаз относятся также карбоксилазы, катализирующие присоединение С02 к различным органическим кислотам. Например, фермент пируваткарбоксилаза катализирует синтез щаве-левоуксусной кислоты из пировиноградной и С02. Каждый класс ферментов обозначается цифрами. Первая цифра означает класс фермента; вторая – подкласс, указывающий соединение, на который действует фермент; третья – подподкласс; четвёртая – номер фермента. Все цифры разделяются точками. Так, каталаза обозначается 1.11.1.6.
Для определения вида микроорганизма пользуются определением у него наличия или отсутствия ферментов класса гидролаз.
Дифференциально-диагностические среды предназначены для идентификации бактерий по биохимическим свойствам. В основе использования этих сред лежат различия в ферментативном составе бактерий и способности ферментов расщеплять тот или иной субстрат. Существуют среды для определения гликолитической активности бактерий, в их состав входят один (среды Гисса ), два (среды Ресселя ) или три (среда Клиглера ) сахара. Протеолитическую активность бактерий изучают на МПБ, средах с желатиной, свернутой сыворотке. Возможность ферментировать более простые азотсодержащие соединения изучают на питательных средах с аминокислотами, бульоне с мочевиной.
Идентификация бактерий по ферментативной активности.
Наиболее часто определяют ферменты класса гидролаз и оксидоредуктаз, используя специальные методы и среды.
Для определения протеолитической активности микроорганизмы засевают в столбик желатина уколом. Через 3—5 дней посевы просматривают и отмечают характер разжижения желатина. При разложении белка некоторыми бактериями могут выделяться специфические продукты — индол, сероводород, аммиак. Для их определения служат специальные индикаторные бумажки, которые помещают между горлышком и ватной пробкой в пробирку с МПБ или (и) пептонной водой, засеянными изучаемыми микроорганизмами. Индол (продукт разложения триптофана) окрашивает в розовый цвет полоску бумаги, пропитанной насыщенным раствором щавелевой кислоты. Бумага, пропитанная раствором ацетата свинца, в присутствии сероводорода чернеет. Для определения аммиака используют красную лакмусовую бумажку.
Для многих микроорганизмов таксономическим признаком служит способность разлагать определенные углеводы с образованием кислот и газообразных продуктов. Для выявления этого используют среды Гисса, содержащие различные углеводы (глюкозу, сахарозу, мальтозу, лактозу и др.). Для обнаружения кислот в среду добавлен реактив Андреде, который изменяет свой цвет от бледно-желтого до красного в интервале рН 7,2—6,5, поэтому набор сред Гисса с ростом микроорганизмов называют «пестрым рядом».
Для обнаружения газообразования в жидкие среды опускают поплавки или используют полужидкие среды с 0,5% агара.
Для того чтобы определить интенсивное кислотообразование, характерное для брожения смешанного типа, в среду с 1% глюкозы и 0,5% пептона (среда Кларка) добавляют индикатор метиловый красный, который имеет желтый цвет при рН 4,5 и выше, и красный —при более низких значениях рН.
Гидролиз мочевины определяют по выделению аммиака (лакмусовая бумажка) и подщелачиванию среды.
При идентификации многих микроорганизмов используют реакцию Фогеса — Проскауэра на ацетоин — промежуточное соединение при образовании бутандиола из пировиноградной кислоты. Положительная реакция свидетельствует о наличии бутандиолового брожения.
Обнаружить каталазу можно по пузырькам кислорода, которые начинают выделяться сразу же после смешивания микробных клеток с 1 % раствором перекиси водорода.
Для определения цитохромоксидазы применяют реактивы: 1) 1% спиртовый раствор сс-нафтола-1; 2) 1% водный раствор N-диметил-р-фенилендиамина дигидро-хлорида. О наличии цитохромоксидазы судят по синему окрашиванию, появляющемуся через 2—5 мин.
Для определения нитритов используют реактив Грисса: Появление красного окрашивания свидетельствует о наличии нитритов.
