- •1.Понятия системы, сети и телекоммуникаций.
- •2. Состав линий связи вычислительных сетей.
- •1. Определение вычислительной системы, вычислительной сети.
- •2. Основные понятия в телекоммуникационных сетях.
- •1. Информационные и коммуникационные сети.
- •2. Коммутация в сетях и маршрутизация пакетов в сетях.
- •Классификация вычислительных систем.
- •Самосинхронизирующиеся коды в телекоммуникационных сетях.
- •Понятие телекоммуникационных вычислительных сетей.
- •2. Коммутация каналов, коммутация пакетов и коммутация пакетов в твс.
- •Понятие процесса. Прикладной процесс. Управление взаимодействием прикладных процессов.
- •Понятие о системах телеобработки данных.
- •Сети и технологии х.25.
- •Организация передачи данных.
- •Сети и технологии f.R.
- •Защита от ошибок. Абонентские пункты систем телеобработки.
- •Сети и технологии атм.
- •Понятие модели. Общие принципы построения и архитектуры вычислительных машин.
- •Локальные вычислительные сети.
- •Информационно-логические основы вычислительных машин. Системы счисления.
- •Корпоративные вычислительные сети. (квс).
- •Представление информации в эвм. Арифметические и логические основы эвм.
- •Операционные системы Windows.
- •Семейство Windows 9x
- •Семейство ос для карманных компьютеров
- •Элементная база эвм. Центральный процессор.
- •Понятие и назначение сетевых операционных систем.
- •Функциональная и структурная организация эвм. Основная память.
- •2. Методы доступа в локальных вычислительных сетях.
- •Периферийные устройства эвм.
- •2. Сети Интранет (Intranet).
- •Внешние устройства эвм.
- •2. Глобальные вычислительные сети (гвс).
- •Программное обеспечение эвм.
- •2. Понятие доменных адресов.
- •Классификация и перспективы развития эвм.
- •2. Основные функции Интернет (Internet).
- •Ценностно-регулирующая функция
- •Развлекательная функция Интернета
- •Большие и малые эвм. Супер эвм и персональные компьютеры.
- •Сервисные услуги Интернет (Internet).
- •Многомашинные и многопроцессорные вычислительные системы.
- •2. Понятие эффективности функционирования гвс и методология ее оценки.
- •Типовые вычислительные структуры и их программное обеспечение.
- •Показатели эффективности функционирования гвс и пути ее повышения.
- •Техническое и информационное обеспечение вычислительных сетей.
- •2. Перспективы развития вычислительных средств.
- •1.Семиуровневая эталонная модель взаимодействия открытых систем.
- •2. Протоколы передачи данных tcp/ ip
- •Программное обеспечение вычислительных сетей.
- •Технические средства человеко-машинного интерфейса.
- •Функции семи уровней эталонной модели вос.
- •Аналоговые и цифровые сети. Аналоговые и Цифровые системы
- •Аналоговые системы передачи и связи (коммутации)
- •Цифровые системы передачи и связи (коммутации)
- •Кластеры и организация функционирования вычислительных сетей.
- •2. Электронная подпись.
- •Телекоммуникационные вычислительные сети и их характеристики.
- •Понятие сервера. Система клиент-сервер.
- •Управление взаимодействием прикладных процессов.
- •2. Операционная система Windows-95.
- •Протоколы передачи данных нижнего уровня модели вос.
- •2. Назначение и состав мультимедиа.
- •Цифровые сети связи
- •2. Защита от ошибок в вычислительных сетях. Основные средства защиты.
- •Электронная почта
- •2. Понятие виртуальной памяти. Понятие гипертекста.
Аналоговые и цифровые сети. Аналоговые и Цифровые системы
Выделяют два класса в телекоммуникационных системах связи (коммутации). Это аналоговые и цифровые системы.
Аналоговые системы передачи и связи (коммутации)
В аналоговых системах все процессы ( прием, передача, связь) основана на аналоговых сигналах. Примеров таких систем множество: телевизионное вещание, радио, телефонная коммутация (связь).
Цифровые системы передачи и связи (коммутации)
В цифровых системах все процессы происходят от цифровых (дискретных) сигналов. Примерами являются - современные объекты связи, цифровая телефония, цифровое телевидение. Эволюционный процесс перехода от аналоговых систем к цифровым связан:
век новых технологий, соответственно в технике все большее распространяются микропроцессорные технологии обработки сигналов;M
создается высокоскоростная паутина цифровых телекоммуникационных сетей;
Соединительными нитками паутины являются магистрали, которые представляют собой набор цифровых каналов коммутации (связи) глобального и локального масштаба. Обращение к этим каналам разрешено различным государственным структурам, предприятиям бизнеса, частным пользователям. Качество передачи и связи соответственно очень высокое. Давайте все-таки приведем преимущества цифровых систем передачи и обработки данных над аналоговыми системами:
надежность передачи данных, а так же высокая помехоустойчивость;
хранение данных на высочайшем уровне;
завязана на вычислительной технике;
минимизация возникновения ошибок при обработке, передачи, коммутации (связи) данных;
БИЛЕТ № 27
Кластеры и организация функционирования вычислительных сетей.
Кластер состоит из нескольких десятков или сотен персональных компьютеров или серверов, соединенных обыкновенной высокоскоростной локальной сетью (например, Gigabit Ethernet). У каждого компьютера есть владелец, использующий свой компьютер по назначению, а объединившись в кластер компьютеры решают общую задачу, требующую огромные вычислительные ресурсы. Увеличивающееся число внедренных кластерных решений обусловлено появлением высокоскоростных проводных линий связи, позволяющих существенно снизить время информационного взаимодействия между вычислителями, что приближает их по скорости к MPP-структурам. MPP, как известно, дороги и правильно будет предположить, что их удел – дорогостоящие проекты, где требуется экстремальная производительность. Кластеры разделяются на централизованные и децентрализованные. Централизованным кластером называется вычислительная система, смонтированная в пределах одного помещения. Соответственно децентрализованные разбросаны в пределах здания.
Управление вычислительными процессами в ВС осуществляют операционные системы, которые являются частью общего программного обеспечения. В состав ОС включают как программы централизованного управления ресурсами системы, так и программы автономного использования вычислительных модулей. Последнее условие необходимо, так как в ВС обычно предусматривается более высокая надежность функционирования, например требование сохранения работоспособности при наличии в ней хотя бы одного исправного модуля.Требование увеличения производительности также предполагает возможность параллельной и даже автономной работы модулей при обработке отдельных заданий или пакетов заданий.
В зависимости от структурной организации ВС можно выявить некоторые особенности построенияих операционных систем.
Операционные системы многомашинных ВС являются более простыми. Обычно они создаются как надстройка автономных ОС отдельных ЭВМ, так как здесь каждая ЭВМ имеет большую автономию в использовании ресурсов (своя оперативная и внешняя память, свой обособленный состав внешних устройств и т.д.). В них широко используются программные методы локального ( в. пределахвычислительного центра) и дистанционного (сетевая обработка) комплексирования.
Общим для построения ОС многомашинных комплексов служит тот факт, что для каждой машины ВС другие играют роль некоторых внешних устройств, и их взаимодействие осуществляется по интерфейсам,имеющим унифицированное программное обеспечение. Все обмены данными между ЭВМ должны предусматриваться пользователями путем включения в программы специальных операторов распараллеливания вычислений. По этим обращениям ОС ВС включает особые программы управления обменом. При этом ОС должна обеспечивать распределение и последующую пересылку заданий или их частей, оформляя их в виде самостоятельных заданий. Такие ОС, организуя обмен, должны формировать и устанавливать связи, контролировать процессы обмена, строить очереди запросов,решать конфликтные ситуации.
В многомашинных ВС диспетчерские функции могут решаться на централизованной или децентрализованной основе. Связь машин обычно устанавливается в порядке подчиненности : “главная ЭВМ - вспомогательная ЭВМ”. Например, в пакете Norton Commander имеется возможность установить подобную связь : “Master” - “Slave”.
Программное обеспечение многопроцессорных ВС отличается большей сложностью. Это объясняется глубиной и сложностью всестороннего анализа процессов, формируемых в ВС, а также сложностью принятия решения в каждой конкретной ситуации. Здесь все операции планирования и диспетчеризации связаны с динамическим распределением ресурсов (оперативной и внешней памяти, процессоров, данных системных таблиц, программ, периферийного оборудования и т.п.). Центральное место в этом играют степень использования и методы управления общей оперативной памятью. Здесь очень часто могут формироваться множественные конфликты,требующие сложных процедур решения, что приводит к задержкам в вычислениях. Как таковые автономные ОС отдельных процессоров отсутствуют.
Для обеспечения эффективной работы многопроцессорных систем их операционные системы специализируют по следующим типовым методам взаимодействия процессоров:
· “ведущий-ведомый”;
· симметричная или однородная обработка во всех процессорах;
· раздельная независимая работа процессоров по обработке заданий. Выбор метода “ведущий - ведомый” в наибольшей степени соответствует ВС с централизованным управлением. Тут имеется определенная аналогия с многомашинными системами, организованными по принципу “главная ЭВМ -вспомогательная ЭВМ”. Диспетчерские функции выполняются только одним процессором системы. Закрепление этих функций может быть фиксированным и плавающим. Для этого может выделяться специализированный процессор или обычный процессор универсального типа, переключающийся и на выполнение вычислений.
