
- •3 . Классификация сетей. Локальные сети, глобальные сети.
- •4.Ключевые аспекты организации уровня передачи данных. Обнаружение и исправление ошибок.
- •5. Ключевые аспекты организации уровня передачи данных. Обработка ошибок.
- •6. Ключевые аспекты организации уровня передачи данных.Сервисы, предоставляемые сетевому уровню
- •7. Ключевые аспекты организации уровня передачи данных. Формирование кадра.
- •8. Подуровень управления доступом к среде. Коммутация на уровне передачи данных. Повторители, концентраторы, мосты, коммутаторы, маршрутизаторы и шлюзы.
- •9. Подуровень управления доступом к среде. Коммутация на уровне передачи данных.Мосты между .X и .У
- •10. Подуровень управления доступом к среде. Проблема распределения канала. Динамическое распределение каналов
- •11. Подуровень управления доступом к среде. Проблема распределения канала. Протоколы без столкновений
- •12. Подуровень управления доступом к среде. Проблема распределения канала. Протоколы множественного доступа с контролем несущей.
- •13. Подуровень управления доступом к среде. Проблема распределения канала. Протоколы с ограниченной конкуренцией
- •14. Подуровень управления доступом к среде. Проблема распределения канала. Статическое распределение канала
- •15. Подуровень управления доступом к среде. Сети Ethernet.
- •16. Подуровень управления доступом к среде. Сеть Ethernet. Манчестерский код.
- •17. Подуровень управления доступом к среде. Сеть Ethernet. Протокол подуровня управления доступом к среде в Ethernet
- •18. Подуровень управления доступом к среде. Сеть Ethernet. Кабели Ethernet.
- •19. Подуровень управления доступом к среде. Система aloha
- •20. Прикладной уровень. Архитектура www
- •21. Прикладной уровень. Служба имен доменов dns.
- •22. Прикладной уровень. Служба доменов dns. Записи ресурсов
- •23. Прикладной уровень. Служба доменов dns. Пространство имен dns
- •24. Прикладной уровень. Служба доменов dns. Серверы имен
- •25. Прикладной уровень. Электронная почта. Архитектура и службы
- •26. Прикладной уровень. Электронная почта. Доставка сообщений
- •27. Прикладной уровень. Электронная почта. Пересылка писем
- •28. Проектирование сетевого уровня. Реализация сервиса без установления соединения.
- •29. Проектирование сетевого уровня. Сервисы, предоставляемые транспортному уровню.
- •30. Проектирование сетевого уровня. Сравнение подсетей виртуальных каналов и дейтаграмных подсетей.
- •31. Сетевой уровень в Интернете. Ip-адреса
- •Ip адрес
- •32. Сетевой уровень в Интернете. Управляющие протоколы Интернета.
- •33. Сетевой уровень в Интернете. Протокол ip.
- •34. Сетевой уровень. Алгоритмы маршрутизации. Выбор кратчайшего пути. Заливка.
- •35. Сетевой уровень. Управляющие алгоритмы маршрутизации. Выбор кратчайшего пути. Маршрутизация по вектору расстояний.
- •36. Сетевой уровень. Управляющие алгоритмы маршрутизации. Выбор кратчайшего пути. Маршрутизация с учётом состояния линий.
- •37. Службы и протоколы.
- •38. Службы на основе соединений и службы без установления соединений
- •39. Службы на основе соединений и службы без установления соединений
- •40. Транспортная служба. Примитивы транспортной службы.
- •41. Транспортная служба. Сокеты Беркли.
- •42. Транспортная служба. Услуги, предоставляемые верхним (транспортным) уровнем.
- •43. Транспортные протоколы Интернета: tcp
- •44. Транспортные протоколы Интернета: tcp Протокол tcp.
- •45. Транспортные протоколы Интернета: tcp. Модель службы tcp
- •46. Транспортные протоколы Интернета: tcp. Основы tcp
- •47. ТпИ: udp Вызов удаленной процедуры
- •48. ТпИ: udp Основы
11. Подуровень управления доступом к среде. Проблема распределения канала. Протоколы без столкновений
Главной проблемой любых широковещательных сетей является вопрос о том, как определить, кому предоставить канал, если пользоваться им одновременно хотят несколько компьютеров. Протоколы, применяющиеся для определения очередности предоставления канала относятся к подуровню передачи данных, называемому управление доступом к среде (MAC). Этот подуровень особенно важен в локальных сетях, так как почти все они используют канал множественного доступа. Центральная проблема – распределение одного широковещательного канала между многочисленными пользователями, претендующими на него.
Столкновения при передаче кадров, приводящие к коллизиям, не могут происходить после того, как станция захватывает канал, они могут случаться в период конкуренции. Эти столкновения снижают производительность системы, особенно при большой длине кабеля и коротких кадрах. В описываемых далее протоколах без столкновений предполагается наличие N станций, у каждой из которых есть постоянный уникальный адрес в пределах от 0 до N- 1.
метод битовой карты, каждый период конкуренции состоит ровноиз N временных интервалов. Если у станции 0 есть кадр для передачи, она передает единичный бит во время 0-го интервала. Другим станциям не разрешается передача в это время. Во время интервала 1 станция 1 также сообщает, есть ли у нее кадр для передачи, передавая бит 1 или 0. В результате к окончанию интервала N все N станций знают, кто хочет передавать. В этот момент они начинают передачу в соответствии со своим порядком номеров. Поскольку все знают, чья очередь передавать, столкновений нет. После того как последняя станция передает свой кадр, что все станции отслеживают, прослушивая линию, начинается новый период подачи заявок из N интервалов. Если станция переходит в состояние готовности (получает кадр для передачи) сразу после того, как она отказалась от передачи, это значит, что ей не повезло и она должна ждать следующего цикла. Протоколы, в которых намерение передавать объявляется всем перед самой передачей, называются протоколами с резервированием.
Двоичный обратный отсчет Станция, желающая занять канал, объявляет свой адрес в виде битовой строки, начиная со старшего бита. Предполагается, что все адреса станций имеют одинаковую длину. Биты адреса в каждой позиции логически складываются (логическое ИЛИ). Неявно предполагается, что задержки распространения сигнала пренебрежимо малы, поэтому станции слышат утверждаемые номера практически мгновенно. Во избежание конфликтов следует применить правило арбитража: как только станция с 0 в старшем бите адреса видит, что в суммарном адресе этот 0 заменился единицей, она сдается и ждет следующего цикла. Например, если станции 0010, 0100, 1001 и 1010 конкурируют за канал, то в первом битовом интервале они передают биты 0, 0, 1 и 1 соответственно. В этом случае суммарный первый бит адреса будет равен 1. Следовательно, станции с номерами 0010 и 0100 считаются проигравшими, а станции 1001 и 1010 продолжают борьбу. Следующий бит у обеих оставшихся станций равен 0 — таким образом, обе продолжают. Третий бит равен 1, поэтому станция 1001 сдается. Победителем оказывается станция 1010, так как ее адрес наибольший. Выиграв торги, она может начать передачу кадра, после чего начнется новый цикл торгов. Данный метод предполагает, что приоритет станции напрямую зависит от ее номера. В некоторых случаях такое жесткое правило может играть положительную, в некоторых — отрицательную роль.