Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Bilet_21-25.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
546.82 Кб
Скачать

Билет 22.

В классической механике пространственные координаты и время являются независимыми (при отсутствии голономных связей, зависящих от времени), время является абсолютным, то есть течёт одинаково во всех системах отсчёта, и действуют преобразования Галилея. В релятивистской же механике события происходят в четырёхмерном пространстве, объединяющем физическое трёхмерное пространство и время (пространство Минковского) и действуют преобразования Лоренца. Таким образом, в отличие от классической механики, одновременность событий зависит от выбора системы отсчёта.

Основные законы релятивистской механики — релятивистское обобщение второго закона Ньютона и релятивистский закон сохранения энергии-импульса — являются следствием такого «смешения» пространственных и временной координат при преобразованиях Лоренца.

Сила определяется как  , также известно выражение для релятивистского импульса:

Взяв для определения силы производную по времени от последнего выражения, получим:

где введены обозначения:   и  .

В результате выражение для силы приобретает вид:

Отсюда видно, что в релятивистской механике в отличие от нерелятивистского случая ускорение не обязательно направлено по силе, в общем случае ускорение имеет также и составляющую, направленную по скорости.

Закон Бернулли является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

Здесь

 — плотность жидкости,

 — скорость потока,

 — высота, на которой находится рассматриваемый элемент жидкости,

 — давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости,

 — ускорение свободного падения.

В научной литературе закон Бернулли, как правило, называется уравнением Бернулли[1](не следует путать с дифференциальным уравнением Бернулли), теоремой Бернулли[2][3] или интегралом Бернулли[4][5].

Константа в правой части часто называется полным давлением и зависит, в общем случае, от линии тока.

Размерность всех слагаемых — единица энергии, приходящаяся на единицу объёма жидкости. Первое и второе слагаемое в интеграле Бернулли имеют смыслкинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. Следует обратить внимание на то, что третье слагаемое по своему происхождению является работой сил давления (см. приводимый в приложении вывод уравнения Бернулли) и не представляет собой запаса какого-либо специального вида энергии («энергии давления»[6]).

Соотношение, близкое[7] к приведенному выше, было получено в 1738 г. Даниилом Бернулли, с именем которого обычно связывают интеграл Бернулли. В современном виде интеграл был получен Иоганном Бернулли около 1740 года.

Для горизонтальной трубы   и уравнение Бернулли принимает вид:    .

Эта форма уравнения Бернулли может быть получена путём интегрирования уравнения Эйлера для стационарного одномерного потока жидкости, при постоянной плотности  :    .

Основным законом (уравнением) гидростатики называется уравнение[1]:

,

где

 — гидростатическое давление (абсолютное или избыточное) в произвольной точке жидкости,

 — плотность жидкости,

 — ускорение свободного падения,

 — высота точки над плоскостью сравнения (геометрический напор[2]),

 — гидростатический напор[3].

Уравнение показывает, что гидростатический напор во всех точках покоящейся жидкости является постоянной величиной.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]