Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экзамен бх.rtf
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
2.13 Mб
Скачать

5.9 Транспортные липопротеиды крови: особенности строения, Состава, функций липопротеидов разных классов. Изменения соотношения липопротеидов при атеросклерозе.

Все липиды, присутствующие в крови, входят в состав смешанных надмолекулярных белковолипидных комплексов. Высшие жирные кислоты связаны с альбуминами плазмы крови, прочие липиды входят в состав липопротеидов плазмы крови. Любой липопротеид плазмы крови состоит из монослойной амфифильной оболочки, образованной молекулами апобелков, фосфолипидов, сфинголипидов и свободного холестерола, и гидрофобного ядра, в состав которого входят триацилглицерины и эфиры холестерола, а также молекулы некоторых других липидов типа витамина Д или витамина Е. Общее содержание липидов в ряду ХМ > ЛПОНП > ЛПНП >> ЛПВП постепенно снижается, тогда как содержание белков в том же ряду постепенно нарастает. Постепенно в том же ряду возрастает содержание фосфолипидов, а содержание триглицеридов понижается. Наконец, содержание холестерола в ряду ХМ Д> ЛПОНП Д> ЛПНП увеличивается, но затем при переходе к ЛПВП оно снижается. В зависимости от состава липопротеидных частиц они

различаются по ряду свойств: плавучей плотности, электрофоретической подвижности и др., что используется при разделении липопротеидов плазмы крови на ряд классов.

Фракция липопротеинов высокой плотности состоит из двух под фракций: ЛПВП2 и ЛПВП3. Эти подфракции различаются между собой по содержанию в них холестерола: в ЛПВП2 его содержится в среднем около 23%, тогда как в ЛПВП3 только 17%.

Белки, содержащиеся в липопротеидах, получили название апобелков или апопротеинов. Известно несколько семейств или классов этих белков: апоА, апоВ, апоС, апоД, апоЕ.

Апобелки различных семейств входят в состав липопротеидов различных классов или в виде главных апобелков, или в виде минорных компонентов. Главными апобелками являются:

для ХМ-белки апоВ48; для ЛПОНП- апоВ100 и апоС; для ЛПНП белки апоВ100;для ЛПВП белки апоА..

1. Хиломикроны (ХМ) - образуются в клетках кишечника, их функция: перенос экзогенного жира из кишечника в ткани (в основном - в жировую ткань), а также - транспорт экзогенного холестерина из кишечника в печень.

2. Липопротеины Очень Низкой Плотности (ЛОНП) - образуются в печени, их роль: транспорт эндогенного жира, синтезированного в печени из углеводов, в жировую ткань.

3. Липопротеины Низкой Плотности (ЛНП) - образуются в кровеносном русле из ЛОНП через стадию образования Липопротеинов Промежуточной Плотности (ЛПП). Их роль: транспорт эндогенного холестерина в ткани.

4. Липопротеины Высокой Плотности (ЛВП) - образуются в печени, основная роль - транспорт холестерина из тканей в печень, то есть удаление холестерина из тканей, а дальше холестерин выводится с желчью.

Наиболее распространенным нарушением липидного обмена является атеросклероз. Это патологическое состояние связано с нарушениями в стенках крупных сосудов аорты или крупных артерий, вызываемыми избыточным накоплением в них холестерола. Велика роль нарушений обмена транспортных липопротеидов плазмы крови, играющих важную роль в переносе холестерола между печенью и кишечником с одной стороны и различными органами и тканями с другой. Содержание холестерола в мембранах клеток периферических органов и тканей, в том числе и в клетках стенок сосудов, будет определяться сбалансированностью потоков. Явное преобладание в крови концентрации холестерола ЛПОНП+ЛППП+ЛПНП над содержанием холестерола в ЛПВП будет свидетельствовать о том, что в клетках периферических тканей накапливается холестерол и возникает угроза развития атеросклеротического процесса. Академиком А.Н.Климовым был предложен специальный показатель холестериновый коэффициент атерогенности, характеризующий соотношение этих потоков. Этот коэффициент рассчитывается по формуле в которой числитель представляет собой не что иное, как содержание холестерола ( ХС ) в ЛПОНП+ЛППП+ЛПНП. Значение этого коэффициента в норме не должно превышать 3,03,5. Если же его значение выше 3,5, человеку угрожает развитие атеросклероза.

47) Роль белков в питании. Пищевая ценность белков. Переваривание белков в пищеварительном тракте. Роль соляной кислоты и протеолитических ферментов в переваривании белков в желудке. Гниение белков в толстом кишечнике.

Белки в организме человека выполняют множество функций. Среди них:

Структурная; Каталитическая; Транспортная; Регуляторная; защитная и т.д..

На белки приходится около 45% сухой массы тела. В таких органах как мышцы, легкие, селезенка белки составляют 80-85% их сухой массы, даже в костях на долю белков приходится около 20% сухой массы.

Для обеспечения синтеза белков организм человека нуждается в наличии 20 аминокислот.

Для человека абсолютно незаменимыми являются 8 аминокислот: Валин, Лейцин, Изолейцин, Лизин, Фенилаланин, Три, Треонин, Метионин. К условно незаменимым относят Гистидин и Аргинин, синтез которых недостаточен для покрытия потребности организма.

Переваривание белков в желудочно-кишечном тракте представляет собой расщепление пищевых видоспецифичных белков, на составляющие их аминокислоты, лишенные данной видовой специфичности.

Расщепление белков в желудочно-кишечном тракте идет при участии ферментов-протеиназ, катализирующих гидролитическое расщепление пептидных связей. Протеиназы делят на две группы:

а) эндопротеиназы, катализирующие разрыв пептидных связей внутри белковых молекул с образованием пептидов. К их числу относятся пепсин, гастриксин, трипсин, химотрипсин, коллагеназа, эластаза;

б) экзопротеиназы, катализирующие отщепление концевых аминокислот с N- или С-конца полипептида. К ним относятся карбоксипептидазы А и Б, лейцинаминопептидаза и аланинаминопептидаза.

Протеиназы желудочно-кишечного тракта обладают определенной специфичностью — с наибольшей эффективностью они катализируют разрыв пептидных связей между вполне определенными аминокислотами. Например:

а) пепсин — катализ разрыва пептидных связей, образованных аминогруппами Фенилаланин и Тирозин;

b) трипсин — катализ разрыва пептидных связей, образованных карбоксильными группами Лиз и Арг;

с) химотрипсин — катализ разрыва пептидных связей, обр. карб. группами Фенилаланин, Тирозин и Три;

В целом протеиназы желудочно-кишечного тракта в отношении своей специфичности обладают дополнительностью действия, т.е. за счет совокупности их каталитического эффекта с большой скоростью идет гидролиз всех пептидных связей в белковых молекулах

Переваривание белков начинается в желудке. В желудочном соке присутствует несколько протеиназ: пепсин, гастриксин, пепсин В. У детей присутствует еще одна эндопротеиназа — реннин.

Главные клетки слизистой желудка вырабатывают профермент пепсиногена. Под действием НСI желудочного сока пепсиноген в результате ограниченного избирательного протеолиза превращается в пепсин. Оптимальной средой является среда с рН порядка 1,0-2,5. Пепсин обеспечивает до 95% всей переваривающей способности желудочного сока. Так, действие гастриксина крайне ограничено.

Важным компонентом желудочного сока является НСI, которая денатурирует белки, делая их структуру более рыхлой, а значит и более доступной для действия протеиназ; угнетает микрофлору, попадающую в желудок вместе с пищей.

Переваривание белков в кишечнике

Смесь полипептидов поступает из желудка в двенадцатиперстную кишку, где под действием протеиназ поджелудочной железы и стенки кишечника продолжается расщепление белков и полипептидов. рН кишечного сока составляет от 7,5 до 8,2, это слабощелочное значение рН поддерживается в основном за счет бикарбонатов, поступающих в кишечник с соком поджелудочной железы. В поджелудочной железе синтезируются трипсиноген, химотрипсиноген, прокарбоксипептидазы А и В, проколлагеназа и проэластаза. С соком поджелудочной железы эти проферменты поступают в просвет кишечника и в результате избирательного ограниченного протеолиза превращаются в активные ферменты.

Важнейшую роль в превращение проферментов в ферменты принадлежит двум протеиназам: энтерокиназе кишечной стенки и трипсину. Энтерокиназа отщепляет от неактивного трипсиногена гексапептид, превращая профермент в активный трипсин. В дальнейшем превращение трипсиногена в трипсин может идти путем аутокатализа.

Образовавшийся трипсин превращает все другие проферменты в активные ферменты. Так, например, химотрипсиноген А или В под действием трипсина превращается в одну из форм активного химотрипсина (пи-химотрипсин, сигма-химотрипсин и др.), или проэластаза превращается в эластазу.

Действие протеиназ поджелудочной железы дополняется действием ферментов, продуцируемых стенками кишечника: аминопептидаз и дипептидаз.

Под действием этого комплекса ферментов белки и пептиды расщепляются до отдельных аминокислот и в таком виде всасываются в стенку кишечника.