
- •4.1 Углеводы, их классификация, биологическая роль отдельных классов. Важнейшие углеводы, входящие в состав организма человека.
- •4.2 Гликоген и его значение. Биосинтез и мобилизация гликогена в печени. Физиологическая роль этих процессов, их регуляция. Гликогенозы.
- •4.3 Аэробный дихотомический распад глюкозы в тканях, его основные этапы, биологическое значение. Пентозо-фосфатный путь распада глюкозы, его биологическая роль.
- •1 Этап. Расщепление глюкозы до пирувата.
- •5.1 Липиды и их классификация.Структура и биологическая роль отдельных классов. Липиды как незаменимые компоненты пищи, норма суточного потребления.
- •5.4 Липиды пищи человека. Переваривание липидов в жкт. Всасывание продуктов расщепления в стенку кишечника. Ресинтез триглицеридов в кишечной стенке. Транспорт экзогенных липидов к органам и тканям.
- •5.5 Депонирование и мобилизация жиров в жировой ткани, физиологическое значение и регуляция. Транспорт и основные направления использования вжк в организме.
- •5.7 Биосинтез и окисление кетоновых тел, биологическая роль этих процессов. Диагностическое значение их определения.
- •5.9 Транспортные липопротеиды крови: особенности строения, Состава, функций липопротеидов разных классов. Изменения соотношения липопротеидов при атеросклерозе.
- •6.2 Аминокислотный пул организма. Пути его пополнения и основные направления его использования. Трансаминирование аминокислот, биологическая роль этого процесса.
- •6.3 Дезаминирование аминокислот. Прямое окислительное дезаминирование. Трансдезаминирование. Судьба безазотистого остатка аминокислот. Кетогенные и глюкогенные аминокислоты.
- •6.4 Декарбоксилирование аминокислот. Биогенные амины, их физиологическое значение. Инактивация биогенных аминов. Нарушения обмена биогенных аминов при патологических состояниях.
- •6.5 Токсичность nh3. Пути обезвреживания nh3 в орг-ме. Биосинтез мочевины: последовательность реакций, суммарное уравнение. Нарушение пр. Обезвреживания. Гипераммониемии.
- •6.6Роль серина, глицина, метионина в образовании одноуглеродных групп и реакциях трансметилирования, участие тгфк в этих процессах, их биологическая значение. Недостаточность фолиевой кислоты.
- •1.Серин используется во многих метаболических путях:
- •3.Обмен метионина и его роль в системе переноса одноуглеродных группировок.
- •4.Недостаточность фолиевой кислоты
- •1.Особенности обмена фенилаланина и тирозина.
- •6.8 Патология обмена простых белков и амин-т: белковая недостаточность, нарушения обмена при недостаточном поступлении витаминов. Врожденные нарушения обмена амин-т, аминоацидурии.
- •6.10 Представление о биосинтезе пиримидиновых нуклеотидов: происхождение атомов пиримидинового кольца. Регуляция биосинтеза. Катаболизм пиримидиновых нуклеотидов.
- •7.1 Первичная, вторичная и третичная структура днк. Роль ядерных белков в компактизации днк. Биологическая роль днк.
- •7.2 Репликация днк, биологическая роль пр.А. Мех-м репликации. Роль ферментов и белков, не обладающих каталитической активностью в мех-ме репликации.
- •7.3 Рнк: стр-е, био роль отдельных классов, локализация в клетке. Особенности стр-я иРнк и тРнк.
- •7.4 Биосинтез рнк в тк. Представление о посттранскрипционном пр.Инге рнк. Био роль транскрипции.
- •7.5 Современные представления о синтезе белка: синтез аминоацил-тРнк, представление о синтезе полипептидных цепей на рибосомах. Посттрансляционныый пр.Инг белковых молекул.
- •8.1.,8.2 И 8.3 в учебнике
- •9.1 Метаболизм как интегрированная система метаболических путей. Уровни взаимосвязи. Система центральных метаболических путей, ее биологическая роль.
- •61) Ацетил-КоА как один из ключевых метаболитов клетки. Пути его образования и использования.
- •9.8 Гормоны. Общая характеристика, химическая природа. Мех-м действия гормонов белковой природы с цАмф в качестве второго вестника.
- •9.9 Гомоны стероидной природы, их функции в орг-ме.Мех-м действия стероидных гормонов.
- •9.10 Гормоны передней доли гипофиза. Химическая природа гомонов, их регуляторные эффекты.
- •9.11 Гормоны щит. Ж.. Общие представления о химической структуре, биосинтезе, влиянии на обмен веществ. Гипо- и гипертиреозы. Причины их возникновения.
- •9.12 И 9.14 гормоны поджелудочной железы: инсулин. Глюкагон. Их химическая природа и влияние на обменные пр..
- •9.14 Адреналин, норадреналин. Из образование и влияние на обмен веществ.
- •9.16 Функции и обмен Са в орг-ме чел-ка. Содержание Са в крови, гипо- и гиперфосфатемии.
- •9.16 Функции и обмен фосфора в орг-ме. Содержание фосфора в крови, гипо- и гиперфосфатемии.
9.12 И 9.14 гормоны поджелудочной железы: инсулин. Глюкагон. Их химическая природа и влияние на обменные пр..
Глюкагон представляет собой гормон полипептидной природы, выделяемый a-клетками поджелудочной железы
В состав полипептидной цепи глюкагона входит 29 амин-тных остатков.
Синтезируется глюкагон на рибосомах aклеток в виде более длинного предшественника. В ходе процессинга происходит существенное укорочение полипептидной цепи, после чего глюкагон секретируется в кровь. В крови он находится в свободной форме. Основная часть глюкагона инактивируется в печени путем гидролитического отщепления 2 амин-тных остатков с Nконца молекулы.
Рецепторы для гормона локализованы в наружной клеточной мембране. Образование гормонрецепторных комплексов сопровождается активацией аденилатциклазы и увеличением в клетках конц-ции цАМФ, сопровождающимся активацией протеинкиназы и фосфорилированием белков.
Под действием глюкагона в гепатоцитах ускоряется мобилизация гликогена с выходом глюкозы в кровь. .Глюкагон активирует пр. глюконеогенеза в гепатоцитах. Глюкагон стимулирует липолиз в липоцитах, увеличивая тем самым поступление в кровь глицерола и высших жирных кислот. В печени гормон тормозит синтез жирных кислот и холестерола из ацетилКоА. Таким образом, глюкагон стимулирует кетогенез. В почках глюкагон увеличивает клубочковую фильтрацию.
Инсулин относится к гормонам белковой природы. Он синтезируется b-клетками поджелудочной железы. Инсулин является одним из важнейших анаболических гормонов. Связывание инсулина с клетками-мишенями приводит к пр., которые увеличивают скорость синтеза белка, а также накопление в клетках гликогена и липидов, являющихся резервом пластического и энергетического материала. Молекула инсулина состоит из двух полипептидных цепей А-цепи и В-цепи. Эти цепи связаны между собой тремя дисульфидными мостиками.
Синтез инсулина начинается в грЭПС, причем на рибосомах образуется молекула предшественника препроинсулина, имеющего в своем составе 104 амин-тных остатка. С Nконца отщепляется последовательность и образуется проинсулин, содержащий 81 амин-тных остатков. В составе проинсулина происходит формирование всех дисульфидных мостиков будущей молекулы инсулина. Проинсулин поступает в аппарат Гольджи, в котором под действием двух различных протеиназ из средней части молекулы проинсулина отщепляется С-пептид и 4 дополнительных амин-тных.
Инсулин переносится кровью в свободном виде, причем биологической активностью обладает только мономер.
1.Инсулин увеличивает проницаемость клеточных мембран для глюкозы в так называемых инсулинзависимых тканях за счет увеличения количества белка переносчика в мембранах клеток. В 2. активирует окислительный распад глюкозы в клетках за счет повышения активности ряда ферментов, таких как глюкокиназа, фосфофруктокиназа, пируваткиназа и др. 3. ингибирует распад гликогена и активирует его синтез в гепатоцитах. 4. стимулирует превращение глюкозы в резервные триглицериды. 5. ингибирует глюконеогенез.