Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экзамен бх.rtf
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
2.13 Mб
Скачать

6.10 Представление о биосинтезе пиримидиновых нуклеотидов: происхождение атомов пиримидинового кольца. Регуляция биосинтеза. Катаболизм пиримидиновых нуклеотидов.

Нуклеотиды -соединения, состоящие из азотистого основания, углевода-пентозы и фосфорной кислоты.

Биосинтез нуклеотидов пиримидинового ряда начинается в цитозоле, где при участии цитозольной карбамоилфосфатсинтетазы образуется карбамоилфосфат, причем источником азота для его синтеза является глутамин: СО2 + Глн + 2АТФ NH2-CO-O-PO3H2 + 2АДФ + Ф + Глу

Далее карбамоилфосфат, взаимодействуя с аспартатом в реакции, катализируемой аспартаттранскарбамоилтрансферазой, превращается в карбамоиласпартат, а затем при участии дигидрооротазы— в дигидрооротовую кислоту: Дигидрооротовая кислота при участии митохондриального фермента дигидрооротатдегидрогеназы переходит в оротовую кислоту. В следующей реакции принимает участие фосфорибозилпирофосфат. Он образуется из рибозо-5-фосфата с участием АТФ в ходе реакции, катализируемой ферментом фосфорибозилпирофосфатсинтетазой. Реакция синтеза фосфорибозилпирофосфата (ФРПФ) не является специфичной для синтеза пиримидиновых нуклеотидов, в ходе этой реакции синтезируется ФРПФ, необходимый для синтеза различных мононуклеотидов.

Оротовая кислота при участии фермента оротат-фосфорибозилтрансферазы переносится на остаток рибозо-5-фосфата с образованием оротидиловой кислоты, которая подвергается декарбоксилированию, с образованием уридин-5-монофосфорной кислоты (уридиловая кислота или УМФ). Последняя реакция катализируется оротидилатдекарбоксилазой. Все остальные нуклеотиды пиримидинового ряда синтезируются из уридиловой кислоты.

Пиримидиновые нуклеозиды, образующиеся в клетках при деградации соответствующих нуклеотидов, могут с помощью специальных ферментов киназ вновь превращаться в мононуклеотиды, кот. расщепл. до конечных продуктов. Расщепление пиримидиновых нуклеотидов начинается с отщепления рибозофосфатного остатка, а образовавшееся свободное азотистое основание расщепляется без образования специфических конечных продуктов.

Решающую роль в регуляции играет ретроингибирование — снижение скорости синтеза нуклеотидов при достижении их достаточной конц-ции в клетках за счет аллостерического ингибирования ключевых ферментов соответствующих метаболических путей.

Основными регуляторными ферментами метаболического пути синтеза пиримидиновых нуклеотидов являются карбамоилфосфатсинтетаза (Е1) и аспартаттранскарбамоилаза (Е2). Активность первого фермента (Е1) ингибируется по аллостерическому мех-му высокими концентрациями УТФ в клетке, а активность второго фермента (Е2) — высокими концентрациями ГТФ. Активность карбамоилфосфатсинтетазы, кроме того, активируется высокими концентрациями ФРПФ.

7.1 Первичная, вторичная и третичная структура днк. Роль ядерных белков в компактизации днк. Биологическая роль днк.

Первичная структура ДНК—это последовательность расположения остатков дезоксирибонуклеотидов в полинуклеотидной цепи. Молекула ДНК построена из двух дезоксирибополинуклеотидных цепей. В состав ДНК в качестве главных нуклеотидов входят 4 нуклеотида – А, Г, Ц, Т. При формировании полинуклеотидной цепи один мононуклеотид соединяется с другим за счет образования сложно-эфирной связи между остатком фосфорной кислоты, связанного с третьим атомом углерода рибозы одного мононуклеотида и пятым атомом углерода рибозы другого (3',5'фосфодиэфирная связь). В последовательности нуклеотидных остатков цепей ДНК закодирована генетическая информация.

Вторичная структура ДНК представляет собой двойную, правозакрученную, спираль, образованную двумя антипараллельными комплементарными дезоксирибополинуклеотидными цепями.

Центральную часть спиральной структуры занимают азотистые основания, плоскости которых почти перпендикулярны длинной оси структуры. Каждое азотистое основание одной цепи образует комплементарную пару с азотистым основанием другой цепи, так что и в целом одна дезоксирибонуклеотидная цепь в спиральной структуре комплементарна второй цепи (аденин-тимин и гуанин-цитозин). Стабилизация такой структуры осуществляется за счет водородных связей между комплементарными парами азотистых оснований соседних цепей.

Третичная структура ДНК - спирализованная молекула ДНК должна быть упакована в пространстве таким образом, чтобы линейные размеры этой структуры были уменьшены. Укладка молекул ДНК в более компактные структуры возможна только в результате ее взаимодействия с другими компонентами ядра, в основном с ядерными белками, такими как гистоны, кислые негистоновые ядерные белки или белки, образующие внутриядерный поддерживающий матрикс. Три уровня компактизации молекул ДНК. Нуклеосомный уровень компактизации обусловлен взаимодействием ДНК с молекулами белков гистонов. Восемь молекул гистонов образуют гистоновый октамер, на который накручивается примерно на 1,75 оборота участок молекулы ДНК. За счет нуклеосомного уровня компактизации линейные размеры молекул ДНК уменьшаются примерно в 6–7 раз.

В формировании второго уровня компактизации ДНК — образовании фибрилл ДНК — важная роль принадлежит белку гистону Н1. Своей глобулярной частью молекула гистона Н1 связывается со средней частью одной нуклеосомы, а с помощью своих “ручек” она взаимодействует с двумя соседними нуклеосомами. При этом нуклеосомы стягиваются вместе, образуя регулярную повторяющуюся структуру, напоминающую спираль. За счет формирования подобного рода фибриллярных структур длина молекул ДНК уменьшается еще в 6–7 раз.

Дальнейшее уменьшение линейных размеров ДНК идет за счет третьего — петельного уровня компактизации. Фибриллы ДНК образуют петлеобразные структуры, крепящиеся к элементам ядерного скелета в интерфазе клеточного цикла или к осевой нити хромосомы в делящейся клетке, образованной негистоновыми белками клеточного ядра.