
- •4.1 Углеводы, их классификация, биологическая роль отдельных классов. Важнейшие углеводы, входящие в состав организма человека.
- •4.2 Гликоген и его значение. Биосинтез и мобилизация гликогена в печени. Физиологическая роль этих процессов, их регуляция. Гликогенозы.
- •4.3 Аэробный дихотомический распад глюкозы в тканях, его основные этапы, биологическое значение. Пентозо-фосфатный путь распада глюкозы, его биологическая роль.
- •1 Этап. Расщепление глюкозы до пирувата.
- •5.1 Липиды и их классификация.Структура и биологическая роль отдельных классов. Липиды как незаменимые компоненты пищи, норма суточного потребления.
- •5.4 Липиды пищи человека. Переваривание липидов в жкт. Всасывание продуктов расщепления в стенку кишечника. Ресинтез триглицеридов в кишечной стенке. Транспорт экзогенных липидов к органам и тканям.
- •5.5 Депонирование и мобилизация жиров в жировой ткани, физиологическое значение и регуляция. Транспорт и основные направления использования вжк в организме.
- •5.7 Биосинтез и окисление кетоновых тел, биологическая роль этих процессов. Диагностическое значение их определения.
- •5.9 Транспортные липопротеиды крови: особенности строения, Состава, функций липопротеидов разных классов. Изменения соотношения липопротеидов при атеросклерозе.
- •6.2 Аминокислотный пул организма. Пути его пополнения и основные направления его использования. Трансаминирование аминокислот, биологическая роль этого процесса.
- •6.3 Дезаминирование аминокислот. Прямое окислительное дезаминирование. Трансдезаминирование. Судьба безазотистого остатка аминокислот. Кетогенные и глюкогенные аминокислоты.
- •6.4 Декарбоксилирование аминокислот. Биогенные амины, их физиологическое значение. Инактивация биогенных аминов. Нарушения обмена биогенных аминов при патологических состояниях.
- •6.5 Токсичность nh3. Пути обезвреживания nh3 в орг-ме. Биосинтез мочевины: последовательность реакций, суммарное уравнение. Нарушение пр. Обезвреживания. Гипераммониемии.
- •6.6Роль серина, глицина, метионина в образовании одноуглеродных групп и реакциях трансметилирования, участие тгфк в этих процессах, их биологическая значение. Недостаточность фолиевой кислоты.
- •1.Серин используется во многих метаболических путях:
- •3.Обмен метионина и его роль в системе переноса одноуглеродных группировок.
- •4.Недостаточность фолиевой кислоты
- •1.Особенности обмена фенилаланина и тирозина.
- •6.8 Патология обмена простых белков и амин-т: белковая недостаточность, нарушения обмена при недостаточном поступлении витаминов. Врожденные нарушения обмена амин-т, аминоацидурии.
- •6.10 Представление о биосинтезе пиримидиновых нуклеотидов: происхождение атомов пиримидинового кольца. Регуляция биосинтеза. Катаболизм пиримидиновых нуклеотидов.
- •7.1 Первичная, вторичная и третичная структура днк. Роль ядерных белков в компактизации днк. Биологическая роль днк.
- •7.2 Репликация днк, биологическая роль пр.А. Мех-м репликации. Роль ферментов и белков, не обладающих каталитической активностью в мех-ме репликации.
- •7.3 Рнк: стр-е, био роль отдельных классов, локализация в клетке. Особенности стр-я иРнк и тРнк.
- •7.4 Биосинтез рнк в тк. Представление о посттранскрипционном пр.Инге рнк. Био роль транскрипции.
- •7.5 Современные представления о синтезе белка: синтез аминоацил-тРнк, представление о синтезе полипептидных цепей на рибосомах. Посттрансляционныый пр.Инг белковых молекул.
- •8.1.,8.2 И 8.3 в учебнике
- •9.1 Метаболизм как интегрированная система метаболических путей. Уровни взаимосвязи. Система центральных метаболических путей, ее биологическая роль.
- •61) Ацетил-КоА как один из ключевых метаболитов клетки. Пути его образования и использования.
- •9.8 Гормоны. Общая характеристика, химическая природа. Мех-м действия гормонов белковой природы с цАмф в качестве второго вестника.
- •9.9 Гомоны стероидной природы, их функции в орг-ме.Мех-м действия стероидных гормонов.
- •9.10 Гормоны передней доли гипофиза. Химическая природа гомонов, их регуляторные эффекты.
- •9.11 Гормоны щит. Ж.. Общие представления о химической структуре, биосинтезе, влиянии на обмен веществ. Гипо- и гипертиреозы. Причины их возникновения.
- •9.12 И 9.14 гормоны поджелудочной железы: инсулин. Глюкагон. Их химическая природа и влияние на обменные пр..
- •9.14 Адреналин, норадреналин. Из образование и влияние на обмен веществ.
- •9.16 Функции и обмен Са в орг-ме чел-ка. Содержание Са в крови, гипо- и гиперфосфатемии.
- •9.16 Функции и обмен фосфора в орг-ме. Содержание фосфора в крови, гипо- и гиперфосфатемии.
6.10 Представление о биосинтезе пиримидиновых нуклеотидов: происхождение атомов пиримидинового кольца. Регуляция биосинтеза. Катаболизм пиримидиновых нуклеотидов.
Нуклеотиды -соединения, состоящие из азотистого основания, углевода-пентозы и фосфорной кислоты.
Биосинтез нуклеотидов пиримидинового ряда начинается в цитозоле, где при участии цитозольной карбамоилфосфатсинтетазы образуется карбамоилфосфат, причем источником азота для его синтеза является глутамин: СО2 + Глн + 2АТФ NH2-CO-O-PO3H2 + 2АДФ + Ф + Глу
Далее карбамоилфосфат, взаимодействуя с аспартатом в реакции, катализируемой аспартаттранскарбамоилтрансферазой, превращается в карбамоиласпартат, а затем при участии дигидрооротазы— в дигидрооротовую кислоту: Дигидрооротовая кислота при участии митохондриального фермента дигидрооротатдегидрогеназы переходит в оротовую кислоту. В следующей реакции принимает участие фосфорибозилпирофосфат. Он образуется из рибозо-5-фосфата с участием АТФ в ходе реакции, катализируемой ферментом фосфорибозилпирофосфатсинтетазой. Реакция синтеза фосфорибозилпирофосфата (ФРПФ) не является специфичной для синтеза пиримидиновых нуклеотидов, в ходе этой реакции синтезируется ФРПФ, необходимый для синтеза различных мононуклеотидов.
Оротовая кислота при участии фермента оротат-фосфорибозилтрансферазы переносится на остаток рибозо-5-фосфата с образованием оротидиловой кислоты, которая подвергается декарбоксилированию, с образованием уридин-5-монофосфорной кислоты (уридиловая кислота или УМФ). Последняя реакция катализируется оротидилатдекарбоксилазой. Все остальные нуклеотиды пиримидинового ряда синтезируются из уридиловой кислоты.
Пиримидиновые нуклеозиды, образующиеся в клетках при деградации соответствующих нуклеотидов, могут с помощью специальных ферментов киназ вновь превращаться в мононуклеотиды, кот. расщепл. до конечных продуктов. Расщепление пиримидиновых нуклеотидов начинается с отщепления рибозофосфатного остатка, а образовавшееся свободное азотистое основание расщепляется без образования специфических конечных продуктов.
Решающую роль в регуляции играет ретроингибирование — снижение скорости синтеза нуклеотидов при достижении их достаточной конц-ции в клетках за счет аллостерического ингибирования ключевых ферментов соответствующих метаболических путей.
Основными регуляторными ферментами метаболического пути синтеза пиримидиновых нуклеотидов являются карбамоилфосфатсинтетаза (Е1) и аспартаттранскарбамоилаза (Е2). Активность первого фермента (Е1) ингибируется по аллостерическому мех-му высокими концентрациями УТФ в клетке, а активность второго фермента (Е2) — высокими концентрациями ГТФ. Активность карбамоилфосфатсинтетазы, кроме того, активируется высокими концентрациями ФРПФ.
7.1 Первичная, вторичная и третичная структура днк. Роль ядерных белков в компактизации днк. Биологическая роль днк.
Первичная структура ДНК—это последовательность расположения остатков дезоксирибонуклеотидов в полинуклеотидной цепи. Молекула ДНК построена из двух дезоксирибополинуклеотидных цепей. В состав ДНК в качестве главных нуклеотидов входят 4 нуклеотида – А, Г, Ц, Т. При формировании полинуклеотидной цепи один мононуклеотид соединяется с другим за счет образования сложно-эфирной связи между остатком фосфорной кислоты, связанного с третьим атомом углерода рибозы одного мононуклеотида и пятым атомом углерода рибозы другого (3',5'фосфодиэфирная связь). В последовательности нуклеотидных остатков цепей ДНК закодирована генетическая информация.
Вторичная структура ДНК представляет собой двойную, правозакрученную, спираль, образованную двумя антипараллельными комплементарными дезоксирибополинуклеотидными цепями.
Центральную часть спиральной структуры занимают азотистые основания, плоскости которых почти перпендикулярны длинной оси структуры. Каждое азотистое основание одной цепи образует комплементарную пару с азотистым основанием другой цепи, так что и в целом одна дезоксирибонуклеотидная цепь в спиральной структуре комплементарна второй цепи (аденин-тимин и гуанин-цитозин). Стабилизация такой структуры осуществляется за счет водородных связей между комплементарными парами азотистых оснований соседних цепей.
Третичная структура ДНК - спирализованная молекула ДНК должна быть упакована в пространстве таким образом, чтобы линейные размеры этой структуры были уменьшены. Укладка молекул ДНК в более компактные структуры возможна только в результате ее взаимодействия с другими компонентами ядра, в основном с ядерными белками, такими как гистоны, кислые негистоновые ядерные белки или белки, образующие внутриядерный поддерживающий матрикс. Три уровня компактизации молекул ДНК. Нуклеосомный уровень компактизации обусловлен взаимодействием ДНК с молекулами белков гистонов. Восемь молекул гистонов образуют гистоновый октамер, на который накручивается примерно на 1,75 оборота участок молекулы ДНК. За счет нуклеосомного уровня компактизации линейные размеры молекул ДНК уменьшаются примерно в 6–7 раз.
В формировании второго уровня компактизации ДНК — образовании фибрилл ДНК — важная роль принадлежит белку гистону Н1. Своей глобулярной частью молекула гистона Н1 связывается со средней частью одной нуклеосомы, а с помощью своих “ручек” она взаимодействует с двумя соседними нуклеосомами. При этом нуклеосомы стягиваются вместе, образуя регулярную повторяющуюся структуру, напоминающую спираль. За счет формирования подобного рода фибриллярных структур длина молекул ДНК уменьшается еще в 6–7 раз.
Дальнейшее уменьшение линейных размеров ДНК идет за счет третьего — петельного уровня компактизации. Фибриллы ДНК образуют петлеобразные структуры, крепящиеся к элементам ядерного скелета в интерфазе клеточного цикла или к осевой нити хромосомы в делящейся клетке, образованной негистоновыми белками клеточного ядра.