
- •Экономико-математические методы
- •2. Геометрическое решение злп
- •3. Основные теоремы линейного программирования
- •2.1.Линейная программа: случай двух переменных
- •2.2 Общие свойства линейных программ
- •2.3. Теоретические основы симплексного метода
- •Симплексный метод решения задач линейного программирования
- •Двойственная задача линейного программирования.
- •7.1. Классическая содержательная постановка лп
- •7.2 Экономическая интерпретация двойственной задачи
- •7.3 Экономическая интерпретация ограничений двойственной задачи.
- •7.4 Экономическая интерпретация теорем двойственности
- •Связь между решениями прямой и двойственной задач
- •2.1. Методы отсечения и их сущность
- •2.Метод гомори
- •Описание метода
- •[Править]Обоснование
- •[Править]Двумерный случай
- •Принцип оптимальности. Уравнение Беллмана
№1Цель, задачи и основные понятия дисциплины «Методы оптимизации»
«Методы оптимальных решений»
Общая трудоемкость изучения дисциплины составляет 3 зач. ед. (108 ч.). Студенты должны: знать
основные понятия и теоремы математического программирования; необходимые и достаточные условия экстремума функций; основные методы линейного, нелинейного, динамического программирования, вариационного исчисления;
уметь
применять аналитические и численные методы отыскания экстремумов функций;
составлять математические модели экономических задач и выбирать методы решения;
применять методы теории игр и статистических решений;
владеть
навыками использования методов оптимизации при решении прикладных задач.
Экстремум функции многих переменных. Необходимые и достаточные условия экстремума функции многих переменных. Условный экстремум. Наибольшее и наименьшее значение функции в замкнутой области. Графический метод решения. Метод наименьших квадратов. Численные методы решения задач одномерной и многомерной оптимизации. Метод половинного деления, «золотого сечения», метод Фибоначчи. Градиентные методы решения гладких экстремальных задач: градиентный метод с регулировкой шага, метод сопряженных градиентов, метод Ньютона. Линейное программирование. Математическая модель задачи линейного программирования. Графический метод решения. Решение задач линейного программирования симплекс-методом. Метод искусственного базиса. Двойственность в линейном программировании. Экономические приложения двойственных задач. Целочисленное программирование. Метод Гомори. Метод ветвей и границ. Дробно-линейное программирование. Приведение задачи дробно-линейного программирования к задаче линейного программирования. Применение симплекс-метода. Транспортная задача линейного программирования. Метод потенциалов и его применение для закрытой и открытой модели транспортной задачи. Нелинейное программирование. Функция Лагранжа. Выпуклое программирование. Теорема Куна-Таккера. Квадратичное программирование. Решение задач с сепарабельными функциями. Динамическое программирование. Задача распределения ресурсов. Уравнения Беллмана. Элементы теории игр. Решение игры в чистых и в смешанных стратегиях. Применение симплекс-метода. Понятие о теории статистических решений. Критерии принятия решений в условиях риска и в условиях неопределенности. Вариационное исчисление. Простейшая задача вариационного исчисления. Уравнение Эйлера. Прямые методы вариационного исчисления. Виды учебной работы: аудиторные занятия (лекции, практические занятия), самостоятельная работа студентов. Изучение дисциплины заканчивается аттестацией в форме зачета
№2 Примеры типовых оптимизационных задач, решаемых методами исследования операций
Рецензенты: Кафедра информатики Института управления и предпринимательства (протокол № 10 от 12 мая 2000 г.); А.А. Кравцов - ведущий научный сотрудник Научно-исследовательского объединения «КИБЕРНЕТИКА» Национальной академии наук Беларуси, кандидат технических наук. Рекомендована к утверждению в качестве типовой: Кафедрой информационных технологий автоматизированных систем Белорусского государственного университета информатики и радиоэлектроники (протокол № 5 от 30 октября 2000 г.); Cоветом Белорусского государственного университета информатики и радиоэлектроники (протокол № 4 от 23 ноября 2000 г.). Согласована с: Учебно- методическим объединением вузов Республики Беларусь по образованию в области электрорадиотехники и информатики; Главным управлением высшего и среднего специального образования; Центром методического обеспечения учебно-воспитательного процесса Республиканского института высшей школы БГУ. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Типовая программа «Системный анализ и исследование операций» разработана для студентов специальности Т.10.01.00 – «Автоматизированные системы обработки информации». Программа учитывает особенности системно-кибернетической и математической подготовки инженеров по информационным технологиям. Цель преподавания дисциплины - освоение современной методологии моделирования и оптимизации решений, которые возникают в различных направлениях науки, техники и экономики. Основные задачи дисциплины: - изучение методологических основ системного анализа и исследования операций для решения сложных системных задач с различной степенью структуризации; - изучение принципов подготовки и принятия решений в условиях многовариантности, многокритериальности, неопределенности и риска; - изучение принципов аналитического моделирования систем, операций и процессов для задач прогнозирования, планирования, диагностики, проектирования и управления. Программа составлена в соответствии с требованиями образовательного стандарта и рассчитана на объем 102 учебных часа. Примерное распределение учебных часов по видам занятий: лекций - 68 часов, лабораторных работ - 34 часа. По дисциплине предусматривается выполнение курсовой работы. В результате освоения курса «Системный анализ и исследование операций» студент должен: знать:
- концептуальные основы современной методологии анализа и оптимизации решений; - принципы решения сложных системных задач с различной степенью структуризации; - научный инструментарий для решения сложных системных задач с различной степенью структуризации; - технологию анализа и оптимизации решений с использованием перспективных средств компьютерной техники;
уметь характеризовать:
- специфику задач принятия решений в различных сферах целенаправленной деятельности человека; - проблематику принятия решений на основе методов, моделей, алгоритмов и процедур системного анализа; - проблематику принятия решений на основе методов, моделей, алгоритмов и процедур исследования операций; - особенности решения задач прогнозирования, планирования, диагностики, проектирования и управления;
уметь анализировать:
- хорошо структуризованные задачи на основе методологии исследования операций; - слабоструктуризованные задачи на основе методологии системного анализа; - неструктуризованные задачи на основе методологии экспертного анализа;
приобрести навыки и качества:
- структуризации, формализации и решения сложных системных задач в различных направлениях науки, техники и экономики; - анализа и оптимизации решений на основе методологии системного анализа; - анализа и оптимизации решений на основе методологии исследования операций; - использования перспективных компьютерных технологий для решения сложных системных задач в условиях многовариантности, многокритериальности, неопределенности и риска.
№3 Общая постановка задачи исследования операций
Процессы принятия решений лежат в основе любой целенаправленной деятельности. В экономике они предшествуют созданию производственных и хозяйственных организаций, обеспечивают их оптимальное функционирование и взаимодействие”. В научных исследованиях – позволяют выделить важнейшие научные проблемы, найти способы их изучения, предопределяют развитие экспериментальной базы и теоретического аппарата. При создании новой техники – составляют важный этап в проектировании машин, устройств, приборов, комплексов, зданий, в разработке технологии их построения и эксплуатации; в социальной сфере – используются для организации функционирования и развития социальных процессов, их координации с хозяйственными и экономическими процессами. Оптимальные (эффективные) решения позволяют достигать цели при минимальных затратах трудовых, материальных и сырьевых ресурсов.
В классической математике методы поиска оптимальных решений рассматривают в разделах классической математики, связанных с изучением экстремумов функций, в математическом программировании.
Математическое программирование является одним из разделов исследования операций – прикладного направления кибернетики, используемого для решения практических организационных задач. Задачи математического программирования находят применение в различных областях человеческой деятельности, где необходим выбор одного из возможных образов действий (программ действий).
Значительное число задач, возникающих в обществе, связано с управляемыми явлениями, т. е. с явлениями, регулируемыми на основе сознательно принимаемых решений. При том ограниченном объеме информации, который был доступен на ранних этапах развития общества, принималось оптимальное в некотором смысле решение на основании интуиции и опыта, а затем, с возрастанием объема информации об изучаемом явлении, – с помощью ряда прямых расчетов. Так происходило, например, создание календарных планов работы промышленных предприятий.
Совершенно иная картина возникает на современном промышленном предприятии с многосерийным и многономенклатурным производством, когда объем входной информации столь велик, что его обработка с целью принятия определенного решения невозможна без применения современных электронных вычислительных машин. Еще большие трудности возникают в связи с задачей о принятии наилучшего решения.
Под принятием решений в исследовании операций понимают сложный процесс, в котором можно выделить следующие основные этапы:
1-й этап. Построение качественной модели рассматриваемой проблемы, т. е. выделение факторов, которые представляются наиболее важными, и установление закономерностей, которым они подчиняются. Обычно этот этап выходит за пределы математики.
2-й этап. Построение математической модели рассматриваемой проблемы, т. е. запись в математических терминах качественной модели. Таким образом, математическая модель – это записанная в математических символах абстракция реального явления, так конструируемая, чтобы анализ ее давал возможность проникнуть в сущность явления. Математическая модель устанавливает соотношения между совокупностью переменных – параметрами управления явлением. Этот этап включает также построение целевой функции переменных, т. е. такой числовой характеристики, большему (или меньшему) значению которой соответствует лучшая ситуация с точки зрения принимающего решения.
Итак, в результате этих двух этапов формируется соответствующая математическая задача. Причем, второй этап уже требует привлечения математических знаний.
3-й этап. Исследование влияния переменных на значение целевой функции. Этот этап предусматривает владение математическим аппаратом для решения математических, задач, возникающих на втором этапе процесса принятия, решения.
Широкий класс задач управления составляют такие экстремальные задачи, в математических моделях которых условия на переменные задаются равенствами и неравенствами. Теория и методы решения этих задач как раз и составляют содержание математического программирования. На третьем этапе, пользуясь математическим аппаратом, находят решение соответствующих экстремальных задач. Обратим внимание на то, что задачи математического программирования, связанные с решением практических вопросов, как правило, имеют большое число переменных и ограничений. Объем вычислительных работ для нахождения соответствующих решений столь велик, что весь процесс не мыслится без применения современных электронных вычислительных машин (ЭВМ), а значит, требует либо создания программ для ЭВМ, реализующих те или иные алгоритмы, либо использования уже имеющихся стандартных программ.
4-й этап. Сопоставление результатов вычислений, полученных на 3-м этапе, с моделируемым объектом, т. е. экспертная проверка результатов (критерий практики). Таким образом, на этом этапе устанавливается степень адекватности модели и моделируемого объекта в пределах точности исходной информации. Здесь возможны два случая:
1-й случай. Если результаты сопоставления неудовлетворительны (обычная ситуация на начальной стадии процесса моделирования), то переходят ко второму циклу процесса. При этом уточняется входная информация о моделируемом объекте и в случае необходимости уточняется постановка задачи (1-й этап), уточняется или строится заново математическая модель (2-й этап), решается соответствующая математическая задача (3-й этап) и, наконец, снова проводится сопоставление (4-й этап). 2-й случай. Если результаты сопоставления удовлетворительны, то модель принимается. Когда речь идет о неоднократном использовании на практике результатов вычислений, возникает задача подготовки модели к эксплуатации. Предположим, например, что целью моделирования является создание календарных планов производственной деятельности предприятия. Тогда эксплуатация модели включает в себя сбор и обработку информации, ввод обработанной информации в ЭВМ, расчеты на основе разработанных программ календарных планов и, наконец, выдачу результатов вычислений (в удобном для пользователей виде) для их использования в сфере производственной деятельности.
№4 Понятие экономико - математической модели. Этапы ее построения и методы решения
Экономико-математические методы
Глава 1. Рассмотрим ряд основных понятий, связанных с системным анализом и моделированием социально-экономических систем, чтобы с их помощью более полно раскрыть суть такого ключевого понятия, как экономико-математические методы. Термин экономико-математические методы понимается в свою очередь как обобщающее название комплекса экономических и математических научных дисциплин, объединенных для изучения социально-экономических систем и процессов. Под социально-экономической системой будем понимать сложную вероятностную динамическую систему, охватывающую процессы производства, обмена, распределения и потребления материальных и других благ. Она относится к классу кибернетических систем, т. е. систем управляемых. Рассмотрим прежде всего понятия, связанные с такими системами и методами их исследования. Центральным понятием кибернетики является понятие «система». Единого определения этого понятия нет; возможна такая формулировка: системой называется комплекс взаимосвязанных элементов вместе с отношениями между элементами и между их атрибутами. Исследуемое множество элементов можно рассматривать как систему, если выявлены следующие четыре признака: • целостность системы, т. е. принципиальная несводимость свойств системы к сумме свойств составляющих ее элементов; • наличие цели и критерия исследования данного множества элементов, • наличие более крупной, внешней по отношению к данной, системы, называемой «средой»; • возможность выделения в данной системе взаимосвязанных частей (подсистем). Основным методом исследования систем является метод моделирования, т. е. способ теоретического анализа и практического действия, направленный на разработку и использование моделей. При этом под моделью будем понимать образ реального объекта (процесса) в материальной или идеальной форме (т. е. описанный знаковыми средствами на каком-либо языке), отражающий существенные свойства моделируемого объекта (процесса) и замещающий его в ходе исследования и управления. Метод моделирования основывается на принципе аналогии, т. е. возможности изучения реального объекта не непосредственно, а через рассмотрение подобного ему и более доступного объекта, его модели. В дальнейшем мы будем говорить только об экономико-математическом моделировании, т. е. об описании знаковыми математическими средствами социально-экономических систем. Практическими задачами экономико-математического моделирования являются: • анализ экономических объектов и процессов; • экономическое прогнозирование, предвидение развития экономических процессов; • выработка управленческих решений на всех уровнях хозяйственной иерархии. Следует, однако, иметь в виду, что далеко не во всех случаях данные, полученные в результате экономико-математического моделирования, могут использоваться непосредственно как готовые управленческие решения. Они скорее могут быть рассмотрены как «консультирующие» средства. Принятие управленческих решений остается за человеком. Таким образом, экономико-математическое моделирование является лишь одним из компонентов (пусть очень важным) в человеко-машинных системах планирования и управления экономическими системами. Важнейшим понятием при экономико-математическом моделировании, как и при всяком моделировании, является понятие адекватности модели, т. е. соответствия модели моделируемому объекту или процессу. Адекватность модели — в какой-то мере условное понятие, так как полного соответствия модели реальному объекту быть не может, что характерно и для экономико-математического моделирования. При моделировании имеется в виду не просто адекватность, но соответствие по тем свойствам, которые считаются существенными для исследования. Проверка адекватности экономико-математических моделей является весьма серьезной проблемой, тем более, что ее осложняет трудность измерения экономических величин. Однако без такой проверки применение результатов моделирования в управленческих решениях может не только оказаться мало полезным, но и принести существенный вред. Социально-экономические системы относятся, как правило, к так называемым сложным системам. Сложные системы в экономике обладают рядом свойств, которые необходимо учитывать при их моделировании, иначе невозможно говорить об адекватности построенной экономической модели. Важнейшие из этих свойств: • эмерджентность как проявление в наиболее яркой форме свойства целостности системы, т.е. наличие у экономической системы таких свойств, которые не присущи ни одному из составляющих систему элементов, взятому в отдельности. вне системы. Эмерджентность есть результат возникновения между элементами системы так называемых синергических связей, которые обеспечивают увеличение общего эффекта до величины, большей, чем сумма эффектов элементов системы, действующих независимо. Поэтому социально-экономические системы необходимо исследовать и моделировать в целом; • массовый характер экономических явлений и процессов. Закономерности экономических процессов не обнаруживаются на основании небольшого числа наблюдений. Поэтому моделирование в экономике должно опираться на массовые наблюдения; • динамичность экономических процессов, заключающаяся в изменении параметров и структуры экономических систем под влиянием среды (внешних факторов); • случайность и неопределенность в развитии экономических явлений. Поэтому экономические явления и процессы носят в основном вероятностный характер, и для их изучения необходимо применение экономико-математических моделей на базе теории вероятностей и математической статистики; • невозможность изолировать протекающие в экономических системах явления и процессы от окружающей среды, чтобы наблюдать и исследовать их в чистом виде; • активная реакция на появляющиеся новые факторы, способность социально-экономических систем к активным, не всегда предсказуемым действиям в зависимости от отношения системы к этим факторам, способам и методам их воздействия. Выделенные свойства социально-экономических систем. естественно, осложняют процесс их моделирования, однако эти свойства следует постоянно иметь в виду при рассмотрении различных аспектов экономико-математического моделирования, начиная с выбора типа модели и кончая вопросами практического использования результатов моделирования. 1.2. Этапы экономико-математического моделирования Процесс моделирования, в том числе и экономико-математического, включает в себя три структурных элемента: объект исследования; субъект (исследователь); модель, опосредующую отношения между познающим субъектом и познаваемым объектом. Рассмотрим общую схему процесса моделирования, состоящую из четырех этапов. Пусть имеется некоторый объект, который мы хотим исследовать методом моделирования. На первом э т а п е мы конструируем (или находим в реальном мире) другой объект — модель исходного объекта-оригинала. Этап построения модели предполагает наличие определенных сведений об объекте-оригинале. Познавательные возможности модели определяются тем, что модель отображает лишь некоторые существенные черты исходного объекта, поэтому любая модель замещает оригинал в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько моделей, отражающих определенные стороны исследуемого объекта или характеризующих его с разной степенью детализации. На втором этапе процесса моделирования модель выступает как самостоятельный объект исследования. Например, одну из форм такого исследования составляет проведение модельных экспериментов, при которых целенаправленно изменяются условия функционирования модели и систематизируются данные о ее "поведении". Конечным результатом этого этапа является совокупность знаний о модели в отношении существенных сторон объекта-оригинала, которые отражены в данной модели. Третий этап заключается в переносе знаний с модели на оригинал, в результате чего мы формируем множество знаний об исходном объекте и при этом переходим с языка модели на язык оригинала. С достаточным основанием переносить какой-либо результат с модели на оригинал можно лишь в том случае, если этот результат соответствует признакам сходства оригинала и модели (другими словами, признакам адекватности). На четвертом этапе осуществляются практическая проверка полученных с помощью модели знаний и их использование как для построения обобщающей теории реального объекта, так и для его целенаправленного преобразования или управления им. В итоге мы снова возвращаемся к проблематике объекта-оригинала. Моделирование представляет собой циклический процесс, т. е. за первым четырехэтапным циклом может последовать второй, третий и т. д. При этом знания об исследуемом объекте расширяются и уточняются, а первоначально построенная модель постепенно совершенствуется. Таким образом, в методологии моделирования заложены большие возможности самосовершенствования. Перейдем теперь непосредственно к процессу экономико-математического моделирования, т. е. описания экономических и социальных систем и процессов в виде экономико-математических моделей. Эта разновидность моделирования обладает рядом существенных особенностей, связанных как с объектом моделирования, так и с применяемыми аппаратом и средствами моделирования. Поэтому целесообразно более детально проанализировать последовательность и содержание этапов экономико-математического моделирования, выделив следующие шесть этапов: постановка экономической проблемы, ее качественный анализ; построение математической модели; математический анализ модели; подготовка исходной информации; численное решение; анализ численных результатов и их применение. Рассмотрим каждый из этапов более подробно. 1. Постановка экономической проблемы и ее качественный анализ. На этом этапе требуется сформулировать сущность проблемы, принимаемые предпосылки и допущения. Необходимо выделить важнейшие черты и свойства моделируемого объекта, изучить его структуру и взаимосвязь его элементов, хотя бы предварительно сформулировать гипотезы, объясняющие поведение и развитие объекта. 2. Построение математической модели. Это этап формализации экономической проблемы, т. е. выражения ее в виде конкретных математических зависимостей (функций, уравнений, неравенств и др.). Построение модели подразделяется в свою очередь на несколько стадий. Сначала определяется тип экономико-математической модели, изучаются возможности ее применения в данной задаче, уточняются конкретный перечень переменных и параметров и форма связей. Для некоторых сложных объектов целесообразно строить несколько разноаспект-ных моделей; при этом каждая модель выделяет лишь некоторые стороны объекта, а другие стороны учитываются агрегированно и приближенно. Оправдано стремление построить модель, относящуюся к хорошо изученному классу математических задач, что может потребовать некоторого упрощения исходных предпосылок модели, не искажающего основных черт моделируемого объекта. Однако возможна и такая ситуация, когда формализация проблемы приводит к неизвестной ранее математической структуре. 3. Математический анализ модели. На этом этапе чисто математическими приемами исследования выявляются общие свойства модели и ее решений. В частности, важным моментом является доказательство существования решения сформулированной задачи. При аналитическом исследовании выясняется, единственно ли решение, какие переменные могут входить в решение, в каких пределах они изменяются, каковы тенденции их изменения и т. д. Однако модели сложных экономических объектов с большим трудом поддаются аналитическому исследованию; в таких случаях переходят к численным методам исследования. 4. Подготовка исходной информации. В экономических задачах это, как правило, наиболее трудоемкий этап моделирования, так как дело не сводится к пассивному сбору данных. Математическое моделирование предъявляет жесткие требования к системе информации; при этом надо принимать во внимание не только принципиальную возможность подготовки информации требуемого качества, но и затраты на подготовку информационных массивов. В процессе подготовки информации используются методы теории вероятностей, теоретической и математической статистики для организации выборочных обследований, оценки достоверности данных и т.д. При системном экономико-математическом моделировании результаты функционирования одних моделей служат исходной информацией для других. 5. Численное решение. Этот этап включает разработку алгоритмов численного решения задачи, подготовку программ на ЭВМ и непосредственное проведение расчетов; при этом значительные трудности вызываются большой размерностью экономических задач. Обычно расчеты на основе экономико-математической модели носят многовариантный характер. Многочисленные модельные эксперименты, изучение поведения модели при различных условиях возможно проводить благодаря высокому быстродействию современных ЭВМ. Численное решение существенно дополняет результаты аналитического исследования, а для многих моделей является единственно возможным. 6. Анализ численных результатов и их применение. На этом этапе прежде всего решается важнейший вопрос о правильности и полноте результатов моделирования и применимости их как в практической деятельности, так и в целях усовершенствования модели. Поэтому в первую очередь должна быть проведена проверка адекватности модели по тем свойствам, которые выбраны в качестве существенных (другими словами, должны быть произведены верификация и валидация модели). Применение численных результатов моделирования в экономике направлено на решение практических задач (анализ экономических объектов, экономическое прогнозирование развития хозяйственных и социальных процессов, выработка управленческих решений на всех уровнях хозяйственной иерархии). Перечисленные этапы экономико-математического моделирования находятся в тесной взаимосвязи, в частности, могут иметь место возвратные связи этапов. Так, на этапе построения модели может выясниться, что постановка задачи или противоречива, или приводит к слишком сложной математической модели; в этом случае исходная постановка задачи должна быть скорректирована. Наиболее часто необходимость возврата к предшествующим этапам моделирования возникает на этапе подготовки исходной информации. Если необходимая информация отсутствует или затраты на ее подготовку слишком велики, приходится возвращаться к этапам постановки задачи и ее формализации, чтобы приспособиться к доступной исследователю информации. Выше уже сказано о циклическом характере процесса моделирования. Недостатки, которые не удается исправить на тех или иных этапах моделирования, устраняются в последующих циклах. Однако результаты каждого цикла имеют и вполне самостоятельное значение. Начав исследование с построения простой модели, можно получить полезные результаты, а затем перейти к созданию более сложной и более совершенной модели, включающей в себя новые условия и более точные математические зависимости. 1.3. Классификация экономико-математических методов и моделей Суть экономико-математического моделирования заключается в описании социально-экономических систем и процессов в виде экономико-математических моделей. В § 1.1 кратко рассмотрен смысл понятий «метод моделирования» и «модель». Исходя из этого экономико-математические методы следует понимать как инструмент, а экономико-математические модели — как продукт процесса экономико-математического моделирования. Рассмотрим вопросы классификации экономико-математических методов. Эти методы, как отмечено выше, представляют собой комплекс экономико-математических дисциплин, являющихся сплавом экономики, математики и кибернетики. Поэтому классификация экономико-математических методов сводится к классификации научных дисциплин, входящих в их состав. Хотя общепринятая классификация этих дисциплин пока не выработана, с известной степенью приближения в составе экономико-математических методов можно выделить следующие разделы: • экономическая кибернетика: системный анализ экономики, теория экономической информации и теория управляющих систем; • математическая статистика: экономические приложения данной дисциплины — выборочный метод, дисперсионный анализ, корреляционный анализ, регрессионный анализ, многомерный статистический анализ, факторный анализ, теория индексов и др.; • математическая экономия и изучающая те же вопросы с количественной стороны эконометрия: теория экономического роста, теория производственных функций, межотраслевые балансы, национальные счета, анализ спроса и потребления, региональный и пространственный анализ, глобальное моделирование и др.; • методы принятия оптимальных решений, в том числе исследование операций в экономике. Это наиболее объемный раздел, включающий в себя следующие дисциплины и методы: оптимальное (математическое) программирование, в том числе методы ветвей и границ, сетевые методы планирования и управления, программно-целевые методы планирования и управления, теорию и методы управления запасами, теорию массового обслуживания, теорию игр. теорию и методы принятия решений. теорию расписаний. В оптимальное (математическое) программирование входят в свою очередь линейное программирование, нелинейное программирование, динамическое программирование, дискретное (целочисленное) программирование, дробно-линейное программирование, параметрическое программирование, сепарабельное программирование, стохастическое программирование, геометрическое программирование; • методы и дисциплины, специфичные отдельно как для централизованно планируемой экономики, так и для. рыночной (конкурентной) экономики. К первым можно отнести теорию оптимального функционирования экономики, оптимальное планирование, теорию оптимального ценообразования, модели материально-технического снабжения и др. Ко вторым — методы, позволяющие разработать модели свободной конкуренции, модели капиталистического цикла, модели монополии, модели индикативного планирования, модели теории фирмы и т. д. Многие из методов, разработанных для централизованно планируемой экономики, могут оказаться полезными и при экономико-математическом моделировании в условиях рыночной экономики; • методы экспериментального изучения экономических явлений. К ним относят, как правило, математические методы анализа и планирования экономических экспериментов, методы машинной имитации (имитационное моделирование), деловые игры. Сюда можно отвести также и методы экспертных оценок, разработанные для оценки явлений, не поддающихся непосредственному измерению. Перейдем теперь к вопросам классификации экономико-математических моделей, другими словами, математических моделей социально-экономических систем и процессов. Единой системы классификации таких моделей в настоящее время также не существует, однако обычно выделяют более десяти основных признаков их классификации, или классификационных рубрик. Рассмотрим некоторые из этих рубрик. По общему целевому назначению экономико-математические модели делятся на теоретико-аналитические, используемые при изучении общих свойств и закономерностей экономических процессов, и прикладные, применяемые в решении конкретных экономических задач анализа, прогнозирования и управления. Различные типы прикладных экономико-математических моделей как раз и рассматриваются в данном учебном пособии. По степени агрегирования объектов моделирования модели разделяются на макроэкономические и микроэкономические. Хотя между ними и нет четкого разграничения, к первым из них относят модели, отражающие функционирование экономики как единого целого, в то время как микроэкономические модели связаны, как правило, с такими звеньями экономики, как предприятия и фирмы. По конкретному предназначению, т. е. по цели создания и применения, выделяют балансовые модели, выражающие требование соответствия наличия ресурсов и их использования; трендовые модели, в которых развитие моделируемой экономической системы отражается через тренд (длительную тенденцию) ее основных показателей; оптимизационные модели, предназначенные для выбора наилучшего варианта из определенного числа вариантов производства, распределения или потребления; имитационные модели, предназначенные для использования в процессе машинной имитации изучаемых систем или процессов и др. По типу информации, используемой в модели экономико-математические модели делятся на аналитические, построенные на априорной информации, и идентифицируемые, построенные на апостериорной информации. По учету фактора времени модели подразделяются на статические, в которых все зависимости отнесены к одному моменту времени, и динамические, описывающие экономические системы в развитии. По учету фактора неопределенности модели распадаются на детерминированные, если в них результаты на выходе однозначно определяются управляющими воздействиями, и стохастические (вероятностные), если при задании на входе модели определенной совокупности значений на ее выходе могут получаться различные результаты в зависимости от действия случайного фактора. Экономико-математические модели могут классифицироваться также по характеристике математических объектов, включенных в модель, другими словами. по типу математического аппарата, используемого в модели. По этому признаку могут быть выделены матричные модели, модели линейного и нелинейного программирования, корреляционно-регрессионные модели, модели теории массового обслуживания, модели сетевого планирования и управления, модели теории игр и т.д. Наконец, по типу подхода к изучаемым социально-экономическим системам выделяют дескриптивные и нормативные модели. При дескриптивном (описательном) подходе получаются модели, предназначенные для описания и объяснения фактически наблюдаемых явлений или для прогноза этих явлений; в качестве примера дескриптивных моделей можно привести названные ранее балансовые и трендовые модели. При нормативном подходе интересуются не тем, каким образом устроена и развивается экономическая система, а как она должна быть устроена и как должна действовать в смысле определенных критериев. В частности, все оптимизационные модели относятся к типу нормативных; другим примером могут служить нормативные модели уровня жизни. Рассмотрим в качестве примера экономико-математическую модель межотраслевого баланса (ЭММ МОБ). С учетом приведенных выше классификационных рубрик это прикладная, макроэкономическая, аналитическая, дескриптивная, детерминированная, балансовая, матричная модель; при этом существуют как статические, так и динамические ЭММ МОБ
№5 Примеры типовых задач линейного программирования
Общая постановка задачи линейного программирования (ЗЛП). Примеры ЗЛП
Линейное программирование – направление математики, изучающее методы решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейным критерием оптимальности.
Несколько слов о самом термине линейное программирование. Он требует правильного понимания. В данном случае программирование - это, конечно, не составление программ для ЭВМ. Программирование здесь должно интерпретироваться как планирование, формирование планов, разработка программы действий.
К математическим задачам линейного программирования относят исследования конкретных производственно-хозяйственных ситуаций, которые в том или ином виде интерпретируются как задачи об оптимальном использовании ограниченных ресурсов.
Круг задач, решаемых при помощи методов линейного программирования достаточно широк. Это, например:
задача об оптимальном использовании ресурсов при производственном планировании;
задача о смесях (планирование состава продукции);
задача о нахождении оптимальной комбинации различных видов продукции для хранения на складах (управление товарно-материальными запасами или "задача о рюкзаке");
транспортные задачи (анализ размещения предприятия, перемещение грузов).
Линейное программирование – наиболее разработанный и широко применяемый раздел математического программирования (кроме того, сюда относят: целочисленное, динамическое, нелинейное, параметрическое программирование). Это объясняется следующим:
математические модели большого числа экономических задач линейны относительно искомых переменных;
данный тип задач в настоящее время наиболее изучен. Для него разработаны специальные методы, с помощью которых эти задачи решаются, и соответствующие программы для ЭВМ;
многие задачи линейного программирования, будучи решенными, нашли широкое применение;
некоторые задачи, которые в первоначальной формулировке не являются линейными, после ряда дополнительных ограничений и допущений могут стать линейными или могут быть приведены к такой форме, что их можно решать методами линейного программирования.
Экономико-математическая модель любой задачи линейного программирования включает: целевую функцию, оптимальное значение которой (максимум или минимум) требуется отыскать; ограничения в виде системы линейных уравнений или неравенств; требование неотрицательности переменных.
В общем виде модель записывается следующим образом:
целевая функция:
|
(2.1) |
ограничения:
|
(2.2) |
требование неотрицательности:
xj ≥ 0, |
(2.3) |
При
этом aij,
bi,
cj (
)
- заданные постоянные величины.
Задача состоит в нахождении оптимального значения функции (2.1) при соблюдении ограничений (2.2) и (2.3).
Систему ограничений (2.2) называют функциональными ограничениями задачи, а ограничения (2.3) - прямыми.
Вектор
,
удовлетворяющий ограничениям (2.2) и
(2.3), называется допустимым
решением (планом) задачи
линейного программирования. План
,
при котором функция (2.1) достигает своего
максимального (минимального) значения,
называется оптимальным.
Далее приведем примеры некоторых типовых задач, решаемых при помощи методов линейного программирования. Такие задачи имеют реальное экономическое содержание. Сейчас лишь сформулируем их в терминах ЗЛП, а методы решения подобных задач рассмотрим ниже.
1. Задача об оптимальном использовании ресурсов при производственном планировании.
Общий смысл задач этого класса сводится к следующему.
Предприятие выпускает n различных изделий. Для их производства требуется m различных видов ресурсов (сырья, материалов, рабочего времени и т.п.). Ресурсы ограничены, их запасы в планируемый период составляют, соответственно, b1, b2,..., bm условных единиц.
Известны также технологические коэффициенты aij, которые показывают, сколько единиц i-го ресурса требуется для производства единицы изделия j-го вида ( ).
Прибыль, получаемая предприятием при реализации изделия j-го вида, равна cj.
В планируемом периоде значения величин aij, bi и cj остаются постоянными.
Требуется составить такой план выпуска продукции, при реализации которого прибыль преприятия была бы наибольшей.
Далее приведем простой пример задачи такого класса.
Компания специализируется на выпуске хоккейных клюшек и наборов шахмат. Каждая клюшка приносит компании прибыль в размере $2, а каждый шахматный набор - в размере $4. На изготовление одной клюшки требуется четыре часа работы на участке A и два часа работы на участке B. Шахматный набор изготавливается с затратами шести часов на участке A, шести часов на участке B и одного часа на участке C. Доступная производственная мощность участка A составляет 120 н-часов в день, участка В - 72 н-часа и участка С - 10 н-часов.
Сколько клюшек и шахматных наборов должна выпускать компания ежедневно, чтобы получать максимальную прибыль?
Условия задач указанного класса часто представляют в табличной форме (см. таблицу 2.1).
Таблица 2.1 - Исходные данные задачи об использовании производственных ресурсов
производственные участки |
затраты времени на единицу продукции, н-час |
доступный фонд времени, н-час |
|
клюшки |
наборы шахмат |
||
А |
4 |
6 |
120 |
В |
2 |
6 |
72 |
С |
- |
1 |
10 |
прибыль на единицу продукции, $ |
2 |
4 |
|
По данному условию сформулируем задачу линейного программирования.
Обозначим: x1 - количество выпускаемых ежедневно хоккейных клюшек, x2 - количество выпускаемых ежедневно шахматных наборов.
Формулировка ЗЛП:
= 2x1 + 4x2 → max; |
|
||
|
|
||
x1 ≥ 0, x2 ≥ 0. |
|
Подчеркнем, что каждое неравенство в системе функциональных ограничений соответствует в данном случае тому или иному производственному участку, а именно: первое - участку А, второе - участку В, третье - участку С.
Повторимся, методы решения ЗЛП мы будем рассматривать чуть позднее, а сейчас - пример задачи другого типа.
2. Задача о смесях (планирование состава продукции).
К группе задач о смесях относят задачи по отысканию наиболее дешевого набора из определенных исходных материалов, обеспечивающих получение смеси с заданными свойствами. Иными словами, получаемые смеси должны иметь в своем составе m различных компонентов в определенных количествах, а сами компоненты являются составными частями n исходных материалов.
На птицеферме употребляются два вида кормов - I и II. В единице массы корма I содержатся единица вещества A, единица вещества В и единица вещества С. В единице массы корма II содержатся четыре единицы вещества А, две единицы вещества В и не содержится вещество C. В дневной рацион каждой птицы надо включить не менее единицы вещества А, не менее четырех единиц вещества В и не менее единицы вещества С. Цена единицы массы корма I составляет 3 рубля, корма II - 2 рубля.
Составьте ежедневный рацион кормления птицы так, чтобы обеспечить наиболее дешевый рацион.
Представим условие задачи в таблице 2.2.
Таблица 2.2 - Исходные данные задачи о смесях
питательные вещества |
содержание веществ в единице массы корма, ед. |
требуемое количество в смеси, ед. |
|
корм I |
корм II |
||
А |
1 |
4 |
1 |
В |
1 |
2 |
4 |
С |
1 |
- |
1 |
цена единицы массы корма, р |
2 |
4 |
|
Cформулируем задачу линейного программирования.
Обозначим: x1 - количество корма I в дневном рационе птицы, x2 - количество корма II в дневном рационе птицы.
Формулировка ЗЛП:
= 3x1 + 2x2 → min; |
|
||
|
|
||
x1 ≥ 0, x2 ≥ 0. |
|
3. Транспортная задача.
Под транспортной задачей понимают целый ряд задач, имеющих определенную специфическую структуру. Наиболее простыми транспортными задачами являются задачи о перевозках некоторого продукта из пунктов отправления в пункты назначения при минимальных затратах на перевозку.
Три поставщика одного и того же продукта располагают в планируемый период следующими его запасами: первый – 120 условных единиц, второй – 100 условных единиц, третий – 80 условных единиц. Этот продукт должен быть перевезен к трем потребителям, потребности которых равны 90, 90 и 120 условных единиц, соответственно.
Обычно начальные условия транспортной задачи записывают в так называемую транспортную таблицу (см. таблицу 2.3). В ячейках таблицы в левом верхнем углу записывают показатели затрат (расходы по доставке единицы продукта между соответствующими пунктами), под диагональю каждой ячейки размещается величина поставки xij (т.е. xij - количество единиц груза, которое будет перевезено от i-го поставщика j-му потребителю).
Таблица 2.3 - Исходные данные транспортной задачи
Необходимо определить наиболее дешевый вариант перевозок, при этом каждый поставщик должен отправить столько груза, сколько имеется у него в запасе, а каждый потребитель должен получить нужное ему количество продукции.
Сформулируем ЗЛП:
= 7x11 + 6x12 + 4x13 + 3x21 + 8x22 + 5x23 + 2x31 + 3x32 + 7x33 → min; |
|
||
|
|
||
xij ≥ 0, ( |
|