
- •1. Основные физические свойства жидкости
- •2.Гидростатическое давление и его свойства
- •3.Дифференциальное уравнение гидростатики
- •4. Основное уравнение гидростатики.
- •5. Примеры эпюр гидростатического давления
- •6. Поверхности равного давления. Примеры
- •7.Давление жидкости на плоскую стенку. Центр Давления
- •8. Давление на цилиндрические поверхности.
- •9. Понятие тела давления. Закон Архимеда.
- •10.Основные понятия гидродинамики
- •12. Режимы движения жидкости. Опыты Рейнольдса
- •13.Уравнение неразрывности
- •14.Уравнение Бернулли для элементарной струйки идеальной жидкости
- •15.Примеры исп. Ур-я Бернулли: Водомер Вентури, трубка Пито, свободная поверхность при сужении русла
- •16. Уравнение Бернулли для целого потока реальной (вязкой)жидкости
- •17. Геом.Интерпретация ур-я Бернулли. Диаграмма Бернулл
- •18.Основное уравнение равномерного движения. Пьезометрический и гидравлический уклон
- •19. Формулы для скорости, расхода и потерь напора в круглой цилиндрической трубе при ламинарном режиме.
- •21. Формула Шези.
- •22. Потери напора в трубопроводах: а) линейные (график Никурадзс), б) местные (примеры).
- •5.3. Графики и. И. Никурадзе
- •5.4. Примеры расчета местных сопротивлений
- •5.4.1. Внезапное расширение трубопровода
- •5.4.2. Постепенное расширение русла
- •5.4.3. Внезапное сужение русла (трубы)
- •5.4.4. Постепенное сужение трубы
- •5.4.5. Внезапный поворот русла
- •5.4.6. Постепенный поворот трубы
- •23. Общая формула для гидравлического расчета трубопроводов.
- •24. Истечение при постоянном напоре из малого круглого отверстия в тонкой стенке.
- •25. Истечение при постоянном напоре из большого прямоугольного отверстия.
- •26. Истечение при переменном напоре.
25. Истечение при постоянном напоре из большого прямоугольного отверстия.
Рассмотрим истечение через большое (широкое) прямоугольное отверстие (рис. 7.7).
Верхняя кромка отверстия расположена на глубине H1, а нижняя – на глубине H2 от свободной поверхности жидкости. Ширина отверстия – b.
Рис. 7.7
Элементарный расход через прямоугольный элемент площади можно записать как:
.
Для того чтобы найти расход через все отверстие, проинтегрируем выражение для элементарного расхода по h в пределах от H1 до H2, считая µ постоянным.
.
Это формула для расхода через прямоугольное отверстие. Но эта формула, как правило, не имеет самостоятельного значения. Она важна как исходная для получения формулы для прямоугольного водослива с тонкой стенкой. Такой водослив получается, если в рассмотренной схеме положим H1 = 0 (рис. 7.8).
Рис. 7.8
Обозначим
.
Назовем величину
коэффициентом расхода для водослива.
Тогда:
|
|
(7.4) |
Значение m в первом приближении можно получить, принимая как для малого круглого отверстия, µ = 0,62. Тогда m ≈ 0,42.
В
наших рассуждениях мы не учитывали
скорость подхода воды к водосливу
и высоту водослива С.
С учетом этих величин можно уточнить
формулу (7.4).
Условием нормального действия водослива является обеспечение свободного подвода воздуха под струю. Прямоугольный водослив часто используется как измеритель расхода; с этой же целью используются водосливы и иной формы, например, треугольные.
26. Истечение при переменном напоре.
Рассмотрим опорожнение открытого в атмосферу сосуда произвольной формы через донное отверстие или насадок с коэффициентом расхода µ (рис. 7.9).
Рис. 7.9
В этом случае истечение будет проходить при переменном, постепенно уменьшающемся напоре. Если напор, а следовательно, и скорость истечения, будут меняться медленно, то движение в каждый момент времени можно рассматривать как установившееся (квазистационарное) и применять для решения уравнение Бернулли.
Обозначим переменную площадь свободной поверхности жидкости S, переменную высоту уровня жидкости, отсчитываемую от дна, – h, площадь отверстия в дне – ω0. Тогда для бесконечно малого промежутка времени dt справедливо уравнение сохранения объемов
или
.
Знак «минус» в формуле возникает потому, что положительному приращению dt соответствует отрицательное приращение dh.
Время полного опорожнения сосуда высотой H найдем, интегрируя это уравнение по переменной высоте уровня в пределах высоты всего сосуда (считаем µ = const):
.
Этот интеграл можно сосчитать, если известен закон изменения площади свободной поверхности S по высоте резервуара. В частности, для призматического сосуда S = const и получаем
|
(7.5) |
Числитель этой формулы равен удвоенному объему сосуда, а знаменатель представляет собой расход в начальный момент времени при опорожнении, т. е. при напоре, равном H. Следовательно, время опорожнения сосуда в два раза больше времени истечения такого же объема жидкости при постоянном напоре H.