
- •1. Основные физические свойства жидкости
- •2.Гидростатическое давление и его свойства
- •3.Дифференциальное уравнение гидростатики
- •4. Основное уравнение гидростатики.
- •5. Примеры эпюр гидростатического давления
- •6. Поверхности равного давления. Примеры
- •7.Давление жидкости на плоскую стенку. Центр Давления
- •8. Давление на цилиндрические поверхности.
- •9. Понятие тела давления. Закон Архимеда.
- •10.Основные понятия гидродинамики
- •12. Режимы движения жидкости. Опыты Рейнольдса
- •13.Уравнение неразрывности
- •14.Уравнение Бернулли для элементарной струйки идеальной жидкости
- •15.Примеры исп. Ур-я Бернулли: Водомер Вентури, трубка Пито, свободная поверхность при сужении русла
- •16. Уравнение Бернулли для целого потока реальной (вязкой)жидкости
- •17. Геом.Интерпретация ур-я Бернулли. Диаграмма Бернулл
- •18.Основное уравнение равномерного движения. Пьезометрический и гидравлический уклон
- •19. Формулы для скорости, расхода и потерь напора в круглой цилиндрической трубе при ламинарном режиме.
- •21. Формула Шези.
- •22. Потери напора в трубопроводах: а) линейные (график Никурадзс), б) местные (примеры).
- •5.3. Графики и. И. Никурадзе
- •5.4. Примеры расчета местных сопротивлений
- •5.4.1. Внезапное расширение трубопровода
- •5.4.2. Постепенное расширение русла
- •5.4.3. Внезапное сужение русла (трубы)
- •5.4.4. Постепенное сужение трубы
- •5.4.5. Внезапный поворот русла
- •5.4.6. Постепенный поворот трубы
- •23. Общая формула для гидравлического расчета трубопроводов.
- •24. Истечение при постоянном напоре из малого круглого отверстия в тонкой стенке.
- •25. Истечение при постоянном напоре из большого прямоугольного отверстия.
- •26. Истечение при переменном напоре.
16. Уравнение Бернулли для целого потока реальной (вязкой)жидкости
17. Геом.Интерпретация ур-я Бернулли. Диаграмма Бернулл
При движении реальной вязкой жидкости в ней возникают силы трения. Часть энергии системы расходуется на преодоление сил трения, необратимым образом при этом преобразуясь в тепловую энергию. Тепловая энергия безвозвратно теряется – рассеивается в окружающее пространство. Поэтому, чтобы применить уравнение Бернулли к процессам в реальной жидкости, в уравнении сохранения энергии нужно учесть эти потери энергии.
Энергия потока в первом сечении
Энергия потока во втором сечении
Энергия потока во втором сечении будет меньше энергии в первом сечении как раз на величину потерь:
или
.
Если мы решим
распространить уравнение Бернулли от
элементарной струйки на целый поток,
то нужно учитывать следующее
обстоятельство. Удельную кинетическую
энергию целого потока можно вычислить
по формуле
.
Здесь
– средняя скорость в поперечном сечении
потока.
В действительности скорости в поперечном сечении потока, как уже обсуждалось выше, существенно отличаются друг от друга: у стенок и дна они малы, к центру потока увеличиваются. Поэтому кинетическая энергия, рассчитанная по средней скорости потока, не равна сумме кинетических энергий элементарных струек, составляющих этот поток. Сумма энергий оказывается больше, и в первый член уравнения Бернулли приходится вводить поправочный коэффициент α, называемый коэффициентом кинетической энергии:
.
Так как
– масса отдельных струек, а
– масса всего потока жидкости, то
имеем:
.
Отметим, что чем больше – средняя скорость в сечении, тем коэффициент α ближе к единице.
В обычных условиях при турбулентном течении в трубах и открытых каналах α меняется в пределах 1,02 – 1,12, поэтому для турбулентных течений обычно принимают α ≈ 1,0.
Для ламинарных течений, имеющих большую неравномерность распределения скоростей по сечению, принимается, α = 2,0.
Что касается таких членов уравнения Бернулли как пьезометрический напор и геометрический напор z, то о них можно сказать следующее.
При распределении давления в поперечном сечении потока по гидростатическому закону можно отнести эти члены к любой точке потока в этом сечении, обычно их относят к центру тяжести. Предположение о гидростатическом законе распределения давления справедливо для параллельноструйного или плавно меняющегося движения и несправедливо в потоках, имеющих значительную кривизну. При значительной кривизне потока эти величины относятся к динамической оси потока, а при отклонении от оси необходимо вводить поправку, учитывающую влияние центробежных сил на распределение давления.
Таким образом, в случае параллельноструйного или плавно изменяющегося движения при обобщении уравнения Бернулли на целый поток реальной жидкости запись этих членов не изменяется. И тогда уравнение Бернулли для целого потока реальной (вязкой) жидкости при установившемся движении записывается в виде
или
|
|
(3.9) |
В такой форме записи все члены уравнения Бернулли имеют линейную размерность, представляя собой напоры или высоты.
Попробуем представить уравнение Бернулли в виде линейной диаграммы (рис. 3.17).
Рис. 3.17
Геометрический
напор z
отсчитывается от условной плоскости
сравнения 0–0 до оси потока. Далее вверх
откладываются отрезки, равные
пьезометрическому напору
и скоростному напору
.
Концы соответствующих отрезков в разных
сечениях по длине потока соединяются
линиями. Так получаются пьезометрическая
линия и линия полной энергии. Константа
в правой части уравнения Бернулли,
характеризующая начальный запас
энергии, соответствует горизонтальной
линии начальной энергии. Расстояние
между линиями начальной и полной энергии
представляет собой потерянный напор
.
Построенная диаграмма наглядно иллюстрирует преобразование удельной энергии потока при его движении, показывает переход одного вида энергии в другой. Так, например, при расширении поперечного сечения потока происходит увеличение потенциальной энергии давления (пьезометрического напора), а кинетическая энергия (скоростной напор) уменьшается. При уменьшении сечения наблюдаем обратную картину.
Важно заметить, что линия полной энергии для реальной жидкости может только падать по длине потока из-за непрерывного увеличения потерь. А пьезометрическая линия может повышаться и понижаться в зависимости от кинетической энергии потока.