Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ShPOR_TsELIKOM_bez_21_bileta.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
999.42 Кб
Скачать

19. Теорема о циркуляции

  1. Понятие циркуляции.

Ц иркуляцией вектора B по заданному замкнутому контуру L называется следующий интеграл по этому контуру:

Т еорема о циркуляции вектора B (закон полного магнитного поля в вакууме):циркуляция вектора B по произвольному замкнутому контуру равна произведению магнитной постоянной µ0 на алгебраическую сумму токов, охватываемых этим контуром.

Циркуляция напряженности эл поля всегда равна 0,следовательно,электростатическое поле потенциально и может быть ох-на потенциалом. Циркуляция магнитной индукции отлична от нуля, если контур, по которому берется циркуляция, охватывает ток.

  1. Закон полного тока.

Ц иркуляция вектора магнитной индукции по произвольному замкнутому контуру равна алгебраической сумме токов проводимости и молекулярных токов (токов намагниченности), охватываемых этим контуром, умноженной на магнитную постоянную:

Циркуляция вектора H по произвольному замкнутому контуру равна алгебраической сумме токов проводимости, охватываемых этим контуром. Циркуляция вектора намагниченности J по произвольному замкнутому контуру равна току намагниченности Iм, охватываемому этим контуром

  1. Примеры применения теоремы

М агнитное поле бесконечного проводника с током:

М агнитное поле соленоида:

Магнитное поле тороида в вакууме:

17. Заряд, движущийся в магнитном поле.

  1. Магнитное поле движущегося заряда.

Н апряженность магнитного поля движущегося заряда также можно определить, используя закон Био – Савара – Лапласа. Таким образом Idl = jSdl = nqvSdl = nqdVv = Nqv, где dV – объем элемента проводника dl, N – полное число частиц в отрезке dl проводника.

  1. Действие магнитного поля на движущийся заряд.

С илу действия магнитного поля на движущийся заряд можно найти исходя из закона Ампера. Пусть по проводнику длиной dl за промежуток времени dt проходит n элементарных зарядов величиной q, т.е. через проводник протекает ток, сила которого I=nq/dt.

Сила Лоренца, действующая со стороны магнитного поля на движущийся заряд, равна (в скалярной и векторной формах).

Так как сила Лоренца всегда направлена перпендикулярно вектору скорости частицы, то она не изменяет величину скорости, а изменяет лишь направление движения частицы, т.е. по физической сути является центростремительной силой. Действие этой силы не приводит к изменению энергии заряженной частицы, т.е. эта сила не совершает работы.

  1. Варианты движения заряженных частиц в магнитном поле.

Заряженная частица влетает в однородное магнитное поле перпендикулярно линиям магнитной индукции. Если скорость изменяется только по направлению, движение с постоянным по величине нормальным ускорением представляет собой равномерное движение по окружности aн=v2/R . В случае когда частица влетает в поле не под прямым углом состовляющая силы лоренца в направлении В равна 0. Таким образом движение можно представить: перемещение вдоль В с постоянной скоростью и равномерным вращением в плоскости, перпендикулярной к вектору В. R=(mvsinα)/qB траектория движения представляет собой спираль.

З аряженная частица движется в магнитном поле вдоль линий магнитной индукции (угол a между векторами равен 0 или p). Сила Лоренца равна нулю. Магнитное поле на частицу не действует и она движется равномерно и прямолинейно.

  1. Эффект Холла

Эффект Холла: если металлическую пластинку, вдоль которой течет постоянный эл ток, поместить в перпенд. к ней магнитное поле, то возник разность потенциалов. Uн= , Uн=RbjB, R-постоянная холла, b-ширина пластинки, j-плотность тока, B-магнитная индукция. Явление Холла наблюдается не только в металлах но и в полу проводниках, причем по знаку эффекта можно определить о принадлежности полупроводника к n или p типу.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]