
- •1)Основные классы интегральных схем и их разновидности. Эсл схемы.
- •2) Основные классы интегральных схем и их разновидности. Кмоп схемы.
- •1. Аналоговые микросхемы — входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания.
- •3)Основные классы интегральных схем и их разновидности. Ттл схемы.
- •1. Аналоговые микросхемы — входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания.
- •3. Аналого-цифровые микросхемы совмещают оба.
- •4)Основные классы интегральных схем и их разновидности. И2л схемы.
- •1. Аналоговые микросхемы — входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания.
- •3. Аналого-цифровые микросхемы совмещают оба.
- •5)Использование схем с тристабильными выходами в цифровых устройствах.
- •6)Комбинационные цифровые устройства. Сумматоры и полусумматоры.
- •7)Комбинационные цифровые устройства. Пороговые схемы.
- •9)Комбинационные цифровые устройства. Мультиплексоры и демультиплексоры.
- •11)Комбинационные цифровые устройства. Дешифратор.
- •12)Комбинационные цифровые устройства. Цифровые компараторы.
- •13)Устройства последовательного типа. Триггеры. Классификация по функциональному признаку и по способу записи информации в триггер.
- •14)Rs триггер и их разновидности. Реализация. Режим работы.
- •15)D-триггеры. Реализация. Режим работы.
- •16)Jk-триггер. Реализация. Режим работы.
- •17)Триггеры с внутренней задержкой.
- •18)Триггеры. Классификация триггеров. Счетный режим работы триггеров. Использование триггеров при построении регулярных цифровых устройств.
- •19)Классификация регистров. Регистры памяти.
- •20)Регистры сдвига.
- •21)Универсальные ригистры.
- •22)Статические озу.
- •23)Счетчики. Классификация. Суммирующие двоичные счетчики. Их реализация.
- •24)Двоичные вычитающие и реверсивные счетчики.
- •25)Счетчики с произвольным коэффициентом счета. Их реализация.
- •26)Устройства для аналого-цифрового преобразования электрических сигналов в сау.
- •27)Классификация ацп. Ацп с двойным интегрированием.
- •28)Ацп с накоплением.
- •29)АЦп сравнения. Ацп поразрядного кодирования.
- •30)Параллельные ацп.
- •31)Последовательно-Параллельные ацп.
- •Параметры цап
- •34)Микропроцессоры. Структура, организация и функционирование микропроцессорных систем.
- •35)Существующая классификация основных типов однокристальных микроконтроллеров, используемых в системах управления и контроля.
- •37)Организация памяти микропроцессорных систем. Виды памяти.
- •38)Понятие системы команд. Виды команд. Формат команд. Коп. Операнд.
- •39)Способы адресации, используемые в мп и мк.
- •40)Архитектурные методы повышения производительности микроконтроллеров.
- •41,48)Виды обмена информацией между мпс и периферийными устройствами.
- •43)Запросы на прерывание. Порядок обслуживание прерываний и тд.
- •45)Структура микропроцессора Кр580вм80а
- •46) Алгоритм управления циклом выполнения команд управляющего автомата мп к580.
- •47)Risc микроконтроллеры. Особенности их архитектуры и функционирования.
- •50)8Ми разрядные периферийные микроконтроллеры pic.
- •51)8Ми разрядные универсальные однокристальные микроконтроллеры Intel mcs-51.
- •52)8Ми разрядные универсальные однокристальные микроконтроллеры семейства avr/
- •54)16 Разрядные универсальные микроконтроллеры семейства Сиеменс.
- •55)32 Разрядные микроконтроллеры.
- •56)Контроллеры цифровой обработки сигналов. Dsp процессоры.
- •57)Программируемые логические интегральные схемы.
55)32 Разрядные микроконтроллеры.
32-разрядные микроконтроллеры содержат высокопроизводительный процессор, соответствующий по своим возможностям младшим моделям микропроцессоров общего назначения. Кроме 32-разрядного процессора на кристалле микроконтроллера размещается внутренняя память команд емкостью до десятков Кбайт, память данных емкостью до нескольких Кбайт, а также сложно-функциональные периферийные устройства — таймерный процессор, коммуникационный процессор, модуль последовательного обмена и ряд других. Микроконтроллеры работают с внешней памятью объемом до 16 Мбайт и выше. Они находят широкое применение в системах управления сложными объектами промышленной автоматики (двигатели, робототехнические устройства, средства комплексной автоматизации производства), в контрольно-измерительной аппаратуре и телекоммуникационном оборудовании. Семейство 32-разрядных микроконтроллеров PIC32 выделяется значительно увеличенной производительностью и объемом памяти накристале. В современных ОМК применяются следующие архитектуры процессоров :
RISC — (Reduced Instruction Set Computer) архитектура с сокращенным набором команд.
CISC — (Complex Instruction Set Computer) традиционная архитектура с расширенным набором команд.
ARM — (Advanced RISC — machine) усовершенствованная RISC архитектура.
Главная задача RISC-архитектуры - обеспечение наивысшей производительности процессора. Её отличительными чертами является:
малое число команд процессора (несколько десятков);
каждая команда выполняется за минимальное время (1-2 машинных цикла, такта).
максимально возможное число регистров общего назначения процессора (несколько тысяч);
увеличенная разрядность процессора (12, 14, 16 бит).
Современная RISC-архитектура включает, как правило, только последние 3 пункта, так как за счет повышенной плотности компоновки БИС стало возможным реализовать большое количество команд.
В современных 32-разрядных ОМК используют ARM архитектуру (расширенная RISC архитектура с суперсокращением команд ТНUМВ).
56)Контроллеры цифровой обработки сигналов. Dsp процессоры.
Цифровой сигнальный процессор — специализированный микропроцессор, предназначенный для цифровой обработки сигналов (обычно в реальном масштабе времени).
Особенности архитектуры
Архитектура сигнальных процессоров, по сравнению с микропроцессорами настольных компьютеров, имеет некоторые особенности:
Гарвардская архитектура (разделение памяти команд и данных), как правило модифицированная;
Большинство сигнальных процессоров имеют встроенную оперативную память, из которой может осуществляться выборка нескольких машинных слов одновременно. Нередко встроено сразу несколько видов оперативной памяти, например, в силу Гарвардской архитектуры бывает отдельная память для инструкций и отдельная — для данных.
Некоторые сигнальные процессоры обладают одним или даже несколькими встроенными постоянными запоминающими устройствами с наиболее употребительными подпрограммами, таблицами и т. п.
Аппаратное ускорение сложных вычислительных инструкций, то есть быстрое выполнение операций, характерных для цифровой обработки сигналов, например, операция «умножение с накоплением» (MAC) (Y := X + A × B) обычно исполняется за один такт.
«Бесплатные» по времени циклы с заранее известной длиной. Поддержка векторно-конвейерной обработки с помощью генераторов адресных последовательностей.
Детерминированная работа с известными временами выполнения команд, что позволяет выполнять планирование работы в реальном времени.
Сравнительно небольшая длина конвейера, так что незапланированные условные переходы могут занимать меньшее время, чем в универсальных процессорах.
Экзотический набор регистров и инструкций, часто сложных для компиляторов. Некоторые архитектуры используют VLIW.
По сравнению с микроконтроллерами, ограниченный набор периферийных устройств — впрочем, существуют «переходные» чипы, сочетающие в себе свойства DSP и широкую периферию микроконтроллеров.
Области применения
Коммуникационное оборудование:
Уплотнение каналов передачи данных;
Кодирование аудио- и видеопотоков;
Системы гидро- и радиолокации;
Распознавание речи и изображений;
Речевые и музыкальные синтезаторы;
Анализаторы спектра;
Управление технологическими процессами;
Другие области, где необходима быстродействующая обработка сигналов, в том числе в реальном времени.