
- •1.Бетоны для изготовления железобетонных конструкций. Основные свойства.
- •2.Прочностные и деформационные характеристики бетонов, используемые при расчете железобетонных конструкций. Классы бетона на прочность. Кубиковая прочность и призменная прочность.
- •3.Арматура для изготовления железобетонных конструкций. Основные свойства. Область применения.
- •4.Арматурные изделия для изготовления железобетонных конструкций. Анкеровка арматуры. Конструктивные требования к продольному и поперечному армированию.
- •5.Понятие о предварительном напряжении. Способы предварительного напряжения железобетонных конструкций. Величина предварительного напряжения.
- •6.Сущность железобетона. Факторы, обеспечивающие совместную работу бетона и арматуры.
- •7.Виды нагрузок. Коэффициенты надежности при проектировании зданий и сооружений.
- •8.Понятия о нормативных и расчетных сопротивлениях бетона и арматуры.
- •9.Основные принципы расчета строительных конструкций. Понятия о двух группах предельных состояний.
- •10.Стадии I и II напряженно - деформированного состояния железобетонных элементов под нагрузкой.
- •11.Третья (III) стадия напряженно - деформированного состояния железобетонных элементов под нагрузкой.
- •12.Три категории требований к трещиностойкости железобетонных конструкций
- •13.Основные принципы расчета по I группе предельных состояний.
- •14) Основные принципы расчета по II группе предельных состояний.
- •15) Виды арматурных изделий и их применение.
- •16. Условия прочности изгибаемого железобетонного элемента с двойным армированием по нормальному сечению.
- •18. Изгибаемые железобетонные элементы. Основные конструктивные требования, примеры армирования.
- •22.Сжатые железобетонные элементы. Примеры. Основные конструктивные требования. Принципы армирования.
- •23.Растянутые железобетонные элементы. Примеры. Основные конструктивные требования. Принципы армирования.
- •24.Примеры косвенного армирования железобетонных элементов
- •1.Отдельные фундаменты под колонны (конструирование, армирование).
- •2.Ленточные, сплошные фундаменты (конструктивные элементы, область применения).
- •3. Область применения свайных фундаментов. Виды свай.
- •1.Область применения. Достоинства и недостатки металлических конструкций.
- •2.Основные характеристики стали.
- •3.Работа стали под нагрузкой.
- •4.Виды сварных соединений
- •5.Конструкция металлической балочной клетки перекрытия Балочные клетки
- •6.Алгоритм расчета балки перекрытия из прокатного профиля
- •7.Центрально сжатые элементы. Конструктивные решения. Узлы
- •8.Внецентренно-сжатые металлические элементы. Конструктивные решения.
- •9. Алгоритм расчета центрально сжатой колонны.
- •10. Сварные соединения и их виды.
- •11. Работа и расчет стыковых швов.
2.Основные характеристики стали.
Ryn – предел текучести стали, принимаемый равным значению предела текучести T σ по государственным стандартам и техническим усло-виям на сталь;
Ry – расчетное сопротивление стали растяжению, сжатию, изгибу по пределу текучести;
Run – временное сопротивление стали разрыву, принимаемое равным минимальному значению
B σ по государственным стандартам и техническим условиям на сталь;
Ru – расчетное сопротивление стали растяжению, сжатию, изгибу по временному сопротивлению;
Rp – расчетное сопротивление стали смятию торцевой поверхности(при наличии пригонки);
Rs – расчетное сопротивление стали сдвигу, R s = 0,58 R y.
Значения механических характеристик зависят от толщины и вида проката (листовой, фасонный). С увеличением толщины проката механические характеристики стали несколько снижаются.
3.Работа стали под нагрузкой.
Работа стали в значительной степени зависит от прочности и работы контактных поверхностей и прослоек между зернами. В отдельных зернах феррита пластические деформации начинаются весьма рано, значительно раньше, чем напряжения стали в целом достигают предела текучести (поэтому модуль упругости стали, строго говоря, не является постоянным). Однако эти деформации сдерживаются в своем развитии сопротивлениями контактных поверхностей (более прочных, чем сами зерна), прослоек между зернами и перлитовых включений.
После достижения сталью предела пропорциональности число зерен, перешедших в пластическое состояние, становится настолько большим, что оно заметно сказывается на наклоне кривой диаграммы растяжения. На пределе текучести в малоуглеродистых (С»0,2%) и низколегированных сталях сопротивления не очень мощных перлитовых включений, прослоек и контактных поверхностей исчерпываются; энергия, накопленная в кристаллитах феррита от сдерживающего влияния межкристаллических сопротивлений, проявляется вовне, происходит общий сдвиг, появляется площадка текучести (рис.1). Таким образом, площадка текучести есть результат запаздывания пластических деформаций в зернах феррита вследствие сдерживающего влияния указанных факторов.
По этой причине в мелкозернистых сталях площадка текучести оказывается более протяженной, а предел текучести более высоким, так как контактных сопротивлений на границах зерен в мелкозернистой стали больше, чем в крупнозернистых. Площадка текучести появляется далеко не у всех сталей: в сталях, содержащих очень мало углерода (С<0,1°/о), площадка текучести обычно не появляется, так как ничтожные включения и прослойки не могут оказать сдерживающего влияния на зерна феррита; в сталях, достаточно углеродистых (0,3%) или высоколегированных, площадка текучести также не появляется, так как перлитовые включения в этих сталях достигают значительной величины (по размерам одного порядка с зернами феррита) и все время сдерживают деформации феррита,—сталь становится более жесткой при увеличении содержания углерода. Таким образом, площадка текучести является особенностью небольшой группы сталей, к которым относятся и строительные стали.
Для сталей, не имеющих площадки текучести, за условный предел текучести принимают напряжение, отвечающее удлинению в 0,2%. При пластической работе стали сдвиги проявляются по определенным направлениям, зависящим от направления силового воздействия и ориентации структуры феррита. Это особенно четко заметно при деформациях на площадке текучести при массовом развитии сдвигов, когда они проходят через несколько кристаллов, образуя целые полосы. Видимым проявлением этих полос являются линии Чернова—Людерса, по которым при нагружении при большом развитии пластических деформаций отскакивает окалина или слабо нанесенная краска. Эти полосы появляются на некотором расстоянии друг от друга и могут быть установлены прямыми наблюдениями и непосредственными измерениями. Между полосами сталь сохраняет свои упругие свойства; сохраняются упругие свойства стали также и по направлениям, не совпадающим с направлением сдвигов. Непосредственными опытами было доказано, что если после развития значительных пластических деформаций в одном направлении образец вновь подвергнуть нагружению того же знака, но в другом направлении, то сталь снова работает упруго при прежнем модуле упругости. Если новая нагрузка имеет знак, противоположный первой, сталь также снова становится работоспособной, но новый модуль упруго-пластических деформаций значительно ниже первоначального. Такие нагружения, когда нагрузки изменяются по разным законам, называются сложными; работа стали при сложном нагружении более благоприятна, чем при простом. Обычная работа конструкции отвечает сложному нагружению, поэтому указанное обстоятельство дает дополнительные запасы прочности. Однако теория, учитывающая развитие пластических деформаций при сложных нагружениях, еще не разработана.