
- •1.Сформулируйте математическую постановку и изложите решение двух основных задач динамики точки.
- •2.Вывести закон движения материальной точки, брошенной под углом к горизонту.
- •3.Доказать необходимое и достаточное условия прямолинейного движения материальной точки и записать дифференциальное уравнение её прямолинейного движения.
- •4.Изложить последовательность интегрирования дифференциального уравнения прямолинейного движения точки в случае, когда сила зависит только от времени.
- •5.Изложить последовательность интегрирования дифференциального уравнения прямолинейного движения точки в случае, когда сила зависит только от скорости.
- •6.Изложить последовательность интегрирования дифференциального уравнения прямолинейного движения точки в случае, когда сила зависит только от координаты точки.
- •7.Рассмотреть решение задачи о падении тела в сопротивляющейся среде. Как определить критическую скорость падения.
- •8.Дайте определение механической системы. Центр масс системы. Классификация сил действующих на систему. Запишите дифференциальные уравнения движения системы.
- •9.Дать определение моментов инерции. Доказать связь между полярным и осевыми моментами инерции. Что такое радиус инерции. Какая ось называется главной центральной осью тела.
- •10.Доказать формулы для вычисления моментов инерции прямолинейного тонкого стержня и прямоугольной пластины.
- •11.Доказать формулы вычисления моментов инерции круга и однородного круглого цилиндра.
- •12.Доказать теорему о зависимости между моментами инерции относительно параллельных осей (теорему Гюйгенса–Штейнера).
- •13.Дать определение количества движения точки и механической системы. Доказать формулу для вычисления количества движения механической системы. Что такое элементарный и полный импульс силы.
- •14.Сформулировать и доказать теорему о количестве движения точки в различных формах.
- •15.Сформулировать и доказать теорему о количестве движения механической системы в различных формах.
- •16.Доказать и сформулировать законы сохранения количества движения механической системы.
- •17.Сформулировать и доказать теорему о движении центра масс механической системы.
- •18.Доказать и сформулировать законы сохранения движения центра масс.
- •19.Дать определение момента количества движения точки и главного момента количеств движения механической системы.
- •20.Сформулировать и доказать теорему о моменте количества движения материальной точки. Рассмотреть движение точки под действием центральной силы.
- •21.Сформулировать и доказать теорему о главном моменте количеств движения механической системы. Сформулировать теорему Резаля.
- •22.Сформулировать и доказать законы сохранения главных моментов количеств движения механической системы.
- •23.Вывести формулу главного момента количеств движения твердого тела относительно оси вращения.
- •24.Вывести дифференциальное уравнение вращательного движения твердого тела вокруг неподвижной оси.
- •25.Обосновать формулы элементарной и полной работы переменной силы в случае криволинейной траектории движения точки. Дать определение и записать формулу мощности силы.
- •26.Вывести формулы работы силы, приложенной к твердому телу при различных случаях его движения.
- •27.Доказать чему равна работа внутренних сил, приложенных к твердому телу.
- •28.Дать определение кинетической энергии точки и механической системы. Сформулировать и доказать теорему Кенига.
- •29.Доказать формулы для вычисления кинетической энергии твердого тела в различных случаях его движения.
- •30.Сформулировать и доказать теорему о кинетической энергии материальной точки в различных формах.
- •31.Сформулировать и доказать теорему о кинетической энергии механической системы различных формах.
- •32.Дать определение потенциального силового поля. Доказать свойства стационарного потенциального силового поля.
- •33.Дать определение поверхности уровня потенциального силового поля и доказать их свойства.
- •34.Как вычисляются силовые функции однородного поля силы тяжести и линейной силы упругости.
- •35.Дать определение силовой функции и потенциальной энергии системы. Доказать закон сохранения полной механической энергии.
- •36.Дать определение силы инерции точки. Сформулировать и обосновать принцип Даламбера для материальной точки.
- •37.Сформулировать принцип Даламбера для механической системы и обосновать метод кинетостатики.
- •38.Вывести формулы главного вектора и главного момента сил инерции.
- •39.Рассмотреть частные случаи приведения сил инерции твердого тела в различных случаях его движения и записать соответствующие формулы.
- •40.Сформулировать определения действительного и возможного перемещения материальной точки и механической системы. Записать формулы для их вычисления.
- •41.Дайте определение и запишите формулы возможной работы силы. Сформулируйте определение идеальной связи.
- •42.Как в аналитической динамике вводится понятие обобщенные силы. Изложите способы вычисления обобщенных сил.
- •43.Сформулируйте принцип возможных перемещений и докажите его необходимость.
- •44.Сформулируйте принцип возможных перемещений и докажите его достаточность.
- •45.Докажите условия равновесия механической системы в обобщенных координатах.
- •46.Изложите вывод принципа Даламбера–Лагранжа (общего уравнения динамики), сформулируйте его и запишите соответствующие формулы в векторной и аналитической формах.
- •47.Запишите уравнения Лагранжа II рода. Изложите последовательность действий при решении задач аналитической динамики с помощью уравнений Лагранжа II рода.
- •48.Изложите вывод уравнений Лагранжа II рода в случае потенциального поля сил. Что такое функция Лагранжа.
- •49.Основы теории малых колебаний около положения устойчивого равновесия. Сформулировать теорему Лагранжа–Дирихле.
- •50.Доказать приближенную формулу кинетической энергия системы с одной степенью свободы при малых отклонениях от положения устойчивого равновесия.
- •51.Доказать приближенную формулу потенциальной энергия системы с одной степенью свободы при малых отклонениях от положения устойчивого равновесия.
- •52.Вывести дифференциальное уравнение свободных колебаний механической системы с одной степенью свободы. Изложить его решение. Дать определение изохронизма свободных колебаний.
- •53.Линейное сопротивление и диссипативная функция. Доказать приближенную формулу диссипативной функции системы с одной степенью свободы при малых отклонениях от положения устойчивого равновесия.
- •54.Сформулировать и доказать физический смысл диссипативной функции.
- •55.Вывести дифференциальное уравнение свободных движений механической системы с одной степенью свободы с учетом сил сопротивления. Изложить его решение в случае малого сопротивления.
- •56.Вывести дифференциальное уравнение свободных движений механической системы с одной степенью свободы с учетом сил сопротивления. Изложить его решение в случаях критического и большего сопротивления.
- •57.Вывести дифференциальное уравнение вынужденных колебаний механической системы с одной степенью свободы без учета сопротивления. Изложить его решение в случае отсутствия резонанса.
- •59.Дать определение явления удара. Изложить основные понятия и допущения элементарной теории удара.
- •60.Рассмотреть случай прямого удара тела о неподвижную поверхность. Коэффициент восстановления и его опытное определение.
45.Докажите условия равновесия механической системы в обобщенных координатах.
На систему из N
материальных точек наложены связи,
удовл. принципу возможных перемещений.
Запишем:
(1). Система имеет n
степеней свободы => ее положение опред.
n
обобщ. координатами
,
а радиус-вектор
,
k-ой
точки:
.
Возможное перемещ. каждой точки:
(2). Подставим (2) в (1):
,
отсюда получим:
(3). Вариации обобщ. координат
независимы друг от друга => (3) выполнится,
когда все обобщенные силы
равны нулю. Условие равновесия голономной
системы в обобщ. коорд.:
.
46.Изложите вывод принципа Даламбера–Лагранжа (общего уравнения динамики), сформулируйте его и запишите соответствующие формулы в векторной и аналитической формах.
На голономную
систему наложены удерживающие и идеальные
связи. Применим к системе принцип
Даламбера. Такая система сил, будет
удовлетворять условию:
,
(1).
Зафиксируем время
и сообщим точкам возможные перемещ.
.
Умножим (1) скалярно на
и просуммируем по k:
.
в силу идеальности связей.
;
,
и окончательно:
При любом движении механической системы с идеальными и удерживающими связями в каждый данный момент сумма возможных работ всех активных сил и сил инерции на любом возможном перемещении равна нулю.
В проекциях на декартовы оси координат:
47.Запишите уравнения Лагранжа II рода. Изложите последовательность действий при решении задач аналитической динамики с помощью уравнений Лагранжа II рода.
,
(
)
3N - число координат у N точек системы в пространстве.
s - количество связей, нахоженных на систему.
n=3N-s - число обобщ. координат определяющих положение системы (если связи голономные и удерживающие, то n - количество степеней свободы системы).
1) определить число степеней свободы механической системы и выбрать удобные обобщ. координаты;
2) вычислить Т системы в ее абсолютном движении и выразить эту энергию через обобщ. координаты и обобщ. скорости;
3) изобразить действующие на систему активные силы и силы трения, составить выражения для работы этих сил на возможном перемещ. и из этого выражения определить обобщ. силы соотв. выбранным обобщ. координатам;
4) вычислить производные, входящие в уравнения Лагранжа;
5) подставить все вычисленные величины в уравнения Лагранжа;
6) найти решения получившихся ДУ, соотв. заданным начальным условиям.
48.Изложите вывод уравнений Лагранжа II рода в случае потенциального поля сил. Что такое функция Лагранжа.
Если силы пот.:
(
),
ур-я Лагранжа примут вид:
(
).
Пот. энергия не зависит от обобщ. скоростей
и явл. ф-цией только обобщ. координат =>
ур-я Лагранжа примут вид:
(
).
Ф-ция, равная
разности кин. и пот. энергий механической
системы, наз. ф-цией Лагранжа, или
кинетическим потенциалом:
(
)
=>
(
).
49.Основы теории малых колебаний около положения устойчивого равновесия. Сформулировать теорему Лагранжа–Дирихле.
- Механическая система может совершать малые колебания только около положения устойчивого равновесия.
- Положение системы называется положением равновесия, если в начальный момент времени система была приведена в это положение при нулевых скоростях и всё время остаётся в этом положении.
- Положение равновесия системы бывает: устойчивым, неустойчивым, безразличным.
- Под устойчивостью мех. сист. подразумевается такое ее свойство, когда все величины, определяющие ее состояние, при малых возмущениях остаются вблизи тех их значений, которые характеризуют невозмущенное состояние системы.
Л-Д: Если в некотором положении консервативной механической системы потенциальная энергия имеет строгий минимум, то это положение является положением устойчивого равновесия системы.