- •1.Сформулируйте математическую постановку и изложите решение двух основных задач динамики точки.
- •2.Вывести закон движения материальной точки, брошенной под углом к горизонту.
- •3.Доказать необходимое и достаточное условия прямолинейного движения материальной точки и записать дифференциальное уравнение её прямолинейного движения.
- •4.Изложить последовательность интегрирования дифференциального уравнения прямолинейного движения точки в случае, когда сила зависит только от времени.
- •5.Изложить последовательность интегрирования дифференциального уравнения прямолинейного движения точки в случае, когда сила зависит только от скорости.
- •6.Изложить последовательность интегрирования дифференциального уравнения прямолинейного движения точки в случае, когда сила зависит только от координаты точки.
- •7.Рассмотреть решение задачи о падении тела в сопротивляющейся среде. Как определить критическую скорость падения.
- •8.Дайте определение механической системы. Центр масс системы. Классификация сил действующих на систему. Запишите дифференциальные уравнения движения системы.
- •9.Дать определение моментов инерции. Доказать связь между полярным и осевыми моментами инерции. Что такое радиус инерции. Какая ось называется главной центральной осью тела.
- •10.Доказать формулы для вычисления моментов инерции прямолинейного тонкого стержня и прямоугольной пластины.
- •11.Доказать формулы вычисления моментов инерции круга и однородного круглого цилиндра.
- •12.Доказать теорему о зависимости между моментами инерции относительно параллельных осей (теорему Гюйгенса–Штейнера).
- •13.Дать определение количества движения точки и механической системы. Доказать формулу для вычисления количества движения механической системы. Что такое элементарный и полный импульс силы.
- •14.Сформулировать и доказать теорему о количестве движения точки в различных формах.
- •15.Сформулировать и доказать теорему о количестве движения механической системы в различных формах.
- •16.Доказать и сформулировать законы сохранения количества движения механической системы.
- •17.Сформулировать и доказать теорему о движении центра масс механической системы.
- •18.Доказать и сформулировать законы сохранения движения центра масс.
- •19.Дать определение момента количества движения точки и главного момента количеств движения механической системы.
- •20.Сформулировать и доказать теорему о моменте количества движения материальной точки. Рассмотреть движение точки под действием центральной силы.
- •21.Сформулировать и доказать теорему о главном моменте количеств движения механической системы. Сформулировать теорему Резаля.
- •22.Сформулировать и доказать законы сохранения главных моментов количеств движения механической системы.
- •23.Вывести формулу главного момента количеств движения твердого тела относительно оси вращения.
- •24.Вывести дифференциальное уравнение вращательного движения твердого тела вокруг неподвижной оси.
- •25.Обосновать формулы элементарной и полной работы переменной силы в случае криволинейной траектории движения точки. Дать определение и записать формулу мощности силы.
- •26.Вывести формулы работы силы, приложенной к твердому телу при различных случаях его движения.
- •27.Доказать чему равна работа внутренних сил, приложенных к твердому телу.
- •28.Дать определение кинетической энергии точки и механической системы. Сформулировать и доказать теорему Кенига.
- •29.Доказать формулы для вычисления кинетической энергии твердого тела в различных случаях его движения.
- •30.Сформулировать и доказать теорему о кинетической энергии материальной точки в различных формах.
- •31.Сформулировать и доказать теорему о кинетической энергии механической системы различных формах.
- •32.Дать определение потенциального силового поля. Доказать свойства стационарного потенциального силового поля.
- •33.Дать определение поверхности уровня потенциального силового поля и доказать их свойства.
- •34.Как вычисляются силовые функции однородного поля силы тяжести и линейной силы упругости.
- •35.Дать определение силовой функции и потенциальной энергии системы. Доказать закон сохранения полной механической энергии.
- •36.Дать определение силы инерции точки. Сформулировать и обосновать принцип Даламбера для материальной точки.
- •37.Сформулировать принцип Даламбера для механической системы и обосновать метод кинетостатики.
- •38.Вывести формулы главного вектора и главного момента сил инерции.
- •39.Рассмотреть частные случаи приведения сил инерции твердого тела в различных случаях его движения и записать соответствующие формулы.
- •40.Сформулировать определения действительного и возможного перемещения материальной точки и механической системы. Записать формулы для их вычисления.
- •41.Дайте определение и запишите формулы возможной работы силы. Сформулируйте определение идеальной связи.
- •42.Как в аналитической динамике вводится понятие обобщенные силы. Изложите способы вычисления обобщенных сил.
- •43.Сформулируйте принцип возможных перемещений и докажите его необходимость.
- •44.Сформулируйте принцип возможных перемещений и докажите его достаточность.
- •45.Докажите условия равновесия механической системы в обобщенных координатах.
- •46.Изложите вывод принципа Даламбера–Лагранжа (общего уравнения динамики), сформулируйте его и запишите соответствующие формулы в векторной и аналитической формах.
- •47.Запишите уравнения Лагранжа II рода. Изложите последовательность действий при решении задач аналитической динамики с помощью уравнений Лагранжа II рода.
- •48.Изложите вывод уравнений Лагранжа II рода в случае потенциального поля сил. Что такое функция Лагранжа.
- •49.Основы теории малых колебаний около положения устойчивого равновесия. Сформулировать теорему Лагранжа–Дирихле.
- •50.Доказать приближенную формулу кинетической энергия системы с одной степенью свободы при малых отклонениях от положения устойчивого равновесия.
- •51.Доказать приближенную формулу потенциальной энергия системы с одной степенью свободы при малых отклонениях от положения устойчивого равновесия.
- •52.Вывести дифференциальное уравнение свободных колебаний механической системы с одной степенью свободы. Изложить его решение. Дать определение изохронизма свободных колебаний.
- •53.Линейное сопротивление и диссипативная функция. Доказать приближенную формулу диссипативной функции системы с одной степенью свободы при малых отклонениях от положения устойчивого равновесия.
- •54.Сформулировать и доказать физический смысл диссипативной функции.
- •55.Вывести дифференциальное уравнение свободных движений механической системы с одной степенью свободы с учетом сил сопротивления. Изложить его решение в случае малого сопротивления.
- •56.Вывести дифференциальное уравнение свободных движений механической системы с одной степенью свободы с учетом сил сопротивления. Изложить его решение в случаях критического и большего сопротивления.
- •57.Вывести дифференциальное уравнение вынужденных колебаний механической системы с одной степенью свободы без учета сопротивления. Изложить его решение в случае отсутствия резонанса.
- •59.Дать определение явления удара. Изложить основные понятия и допущения элементарной теории удара.
- •60.Рассмотреть случай прямого удара тела о неподвижную поверхность. Коэффициент восстановления и его опытное определение.
38.Вывести формулы главного вектора и главного момента сил инерции.
Главный вектор:
Главный вектор всех сил инерции механической системы равен производной по времени от количества движения системы, взятой с противоположным знаком.
Так как
,
то:
,
где: M
- масса системы,
и
- скорость и ускорение ц. м.
Главный момент:
Главный момент сил инерции механической системы относительно неподвижного центра О равен производной по времени от кинетического момента (момента количества движения) механической системы, относительно того же центра, взятой с обратным знаком.
39.Рассмотреть частные случаи приведения сил инерции твердого тела в различных случаях его движения и записать соответствующие формулы.
Поступательное движение: силы инерции точек тела приводятся к равнодействующей, геометрически равной главному вектору и приложенной в центре масс тела.
Вращательное
движение:
если тело имеет плоскость симметрии
Сxy
и вращается вокруг оси Сz,
проходящей через центр масс С и
этой плоскости, то
,
так как ускорение центра масс равно
нулю. Система сил инерции приводиться
к паре, лежащей в плоскости симметрии
Сxy,
момент которой
этой плоскости и равен главному моменту
сил инерции
.
,
в проекции на ось Сz:
Плоскопараллельное движение: если ТТ имеет плоскость материальной симметрии и движется параллельно этой плоскости, то силы инерции точек тела приводятся к силе, приложенной в центре масс тела C, и к паре сил, лежащей в плоскости симметрии. Сила равна главному вектору сил инерции, а величина момента пары равна главному моменту сил инерции.
;
40.Сформулировать определения действительного и возможного перемещения материальной точки и механической системы. Записать формулы для их вычисления.
-Действительным перемещением точки за время dt называется такое элементарное перемещение, которое она фактически совершает в пространстве за время dt при данных связях.
- Известно, что координаты точек и, следовательно их радиус-вектора можно выразить через обобщенные координаты.
Элементарное
действительное перемещение k-ой
точки системы определяется как полный
дифференциал функции
при переменном времени:
-Возможным называется любое допускаемое связями перемещение материальной точки из положения, занимаемого ею в данный момент времени, в бесконечно близкое положение, которое она может занимать в тот же момент времени.
-Известно, что координаты точек и, следовательно их радиус-вектора можно выразить через обобщенные координаты.
Возможное перемещение можно вычислить как полный дифференциал функции при фиксированном времени:
- Если связь
стационарная, то элементарное
действительное перемещение точки
совпадает
с одним из возможных
.
41.Дайте определение и запишите формулы возможной работы силы. Сформулируйте определение идеальной связи.
Возможной работой
силы
называется работа силы на любом возможном
перемещении точки ее приложения:
.
Связи называются идеальными, если возможная работа реакций связей на любом возможном перемещении системы из любого ее положения равна нулю.
Для одной точки и
одной связи:
,
то есть реакция перпендикулярна любому
перемещению точки.
Идеальные связи характеризуют: абсолютно гладкие поверхности, нерастяжимые нити, цилиндрические и сферические шарниры, качение по твердой шероховатой поверхности без скольжения.
