- •1.1 Волновое уравнение для электромагнитной волны. Скорость распространения волны. Основные свойства электромагнитных волн.
- •1.2 Уравнение плоской и сферической электромагнитной волны. Интенсивность и ее связь с амплитудой волны.
- •2.1 Световая волна. Показатель преломления среды. Законы геометрической оптики.
- •2.2 Оптическая длина пути. Принцип Ферма. Таутохронность.
- •2.3 Формула тонкой линзы, построение изображений в плоских зеркалах и линзах.
- •3.1 Принцип суперпозиции волн. Интенсивность при сложении двух волн.
- •3.2 Расчет интерференционной картины от двух источников. Ширина полосы и количество наблюдаемых полос.
- •3.3 Способы получения когерентных источников в оптике: бизеркала Френеля, зеркало Ллойда, бипризма Френеля, билинза Бийе.
- •3.4 Влияние немонохроматичности и размера источника на видимость интерференционной картины.
- •3.5 Интерференция в тонких пленках. Полосы равной толщины и равного наклона. Кольца Ньютона.
- •4.1 Дифракция света. Дифракция Френеля и Дифракция Фраунгофера.
- •4.2 Принцип Гюйгенса-Френеля. Зоны Френеля. Векторные диаграммы.
- •4.3 Дифракция Френеля на круглом отверстии и диске.
- •4 .4 Дифракция Фраунгофера на длинной щели и двух щелях.
- •4.5 Дифракционная решетка. Угловая дисперсия и разрешающая способность решетки.
- •5.1 Естественный и поляризованный свет. Типы поляризации. Степень поляризации.
- •5.2 Поляризаторы и анализаторы. Прохождение света через совершенные и несовершенные поляризаторы. Закон Малюса.
- •5.3 Поляризация света при отражении. Закон Брюстера.
- •5.4 Прохождение света через антизотропную среду. Одноосные кристаллы. Обыкновенная и необыкновенная волны.
- •5.5Интерференция поляризованных волн.
- •5.6 Искусственная анизотропия. Эффект Керра. Вращение плоскости поляризации (оптическая активность, эффект Фарадея).
- •6.1 Поглощение света. Рассеяние света. Дисперсия света.
- •6.2 Тепловое излучение, его характеристики и законы.
- •6.3 Квантовая гипотеза Планка, формула Планка.
- •7.1 Фотоны. Энергия и импульс фотона
- •7.2 Внешний фотоэффект и его законы. Формула Эйнштейна и объяснение на ее основе законов фотоэффекта.
- •7.3 Эффект Комптона.
- •7.4 Гипотеза де Бройля. Опыты Девиссона-Джермера. Дифракция электронов.
- •7.5 Неприменимость понятия траектории к микрочастицам. Соотношение неопределенностей Гейзенберга.
- •7.6 Задание состояния частицы в квантовой механике. Волновая функция и её статистический смысл. Нормировка.
- •7.7 Стационарные состояния. Временное и сционарное уравнение Шредингера.
- •7.8 Частица в одномерной бесконечно глубокой потенциальной яме. Волновые функции и квантование энергии.
- •7.9. Гармонический осциллятор в квантовой механике.
- •7.10. Прохождение частицы через одномерный потенциальный барьер. Туннельный эффект.
- •7.11. Теория Бора для атома водорода. Экспериментальное подтверждение постулатов Бора. Опыт Франка и Герца.
- •7.12. Квантомеханическая модель атома водорода. Квантовые числа. Энергия, момент импульса и его проекция для электрона в атоме водорода. Спектральные серии атома водорода.
- •Образование атома водорода и его спектр излучения
- •7.13. Пространственное квантование. Опыт Штерна-Герлаха. Спин электрона.
- •7.14. Принцип запрета Паули. Периодическая система элементов. Распределение электронов по оболочкам и подоболочкам в атоме.
7.14. Принцип запрета Паули. Периодическая система элементов. Распределение электронов по оболочкам и подоболочкам в атоме.
При́нцип Па́ули (принцип запрета) — один из фундаментальных принципов квантовой механики, согласно которому два и более тождественных фермиона (частиц с полуцелым спином) не могут одновременно находиться в одном квантовом состоянии.
Принцип Паули можно сформулировать следующим образом: в пределах одной квантовой системы в данном квантовом состоянии может находиться только одна частица, состояние другой должно отличаться хотя бы одним квантовым числом.
Периодическая система элементов представляет собой классификацию химических элементов в соответствии с периодическим законом, устанавливающим периодическое изменение свойств химических элементов по мере увеличения их атомной массы, связанного с увеличением заряда ядра их атомов; поэтому заряд ядра атома совпадает с порядковым номером элемента в периодической системе и называется атомным номером элемента
Распределение электронов по оболочкам и особенности электромагнитых излучений атомов
Еще одно ключевое открытие — и ученые получили окончательный ответ на вопрос о причинах периодичности расположения элементов в таблице. Оказалось, что электронное излучение элементов чаще всего не ограничивается одной длиной волны, а характеризуется спектрами из одной, двух, трех и даже большего числа длин волн. Эти наборы характеристических волн получили название К-серий, L-серий, М-серий и т.д. Исследователи объяснили это явление распределением электронов по «оболочкам» вокруг положительно заряженного атомного ядра. Сильнее всего удерживаются электроны внутренних оболочек, и для их удаления требуется наибольшая энергия. Соответственно электрон, занимающий место на этом уровне, имеет наиболее мощное и коротковолновое излучение, принадлежащее К-серии. Электроны более удаленной от ядра оболочки характеризуются L-серией спектра, следующие за ними — М-серией и т.д. Поэтому соответствующие электронные оболочки получили название К-оболочка, L-оболочка, М-оболочка и т.д.
