Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГОТОВАЯ ШПОРА ФИЗИКА.docx
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
904.16 Кб
Скачать

8. Потенциальная энергия.

Потенциальная энергия   — скалярная физическая величина, характеризующая способность некого тела (или материальной точки) совершать работу за счет своего нахождения в поле действия сил. Другое определение: потенциальная энергия — это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы

Потенциальная энергия в поле тяготения Земли вблизи поверхности приближённо выражается формулой:

,

где Ep — потенциальная энергия тела, m — масса тела, g — ускорение свободного падения, h — высота положения центра масс тела над произвольно выбранным нулевым уровнем.

О физическом смысле понятия потенциальной энергии 

—Если кинетическая энергия может быть определена для одного отдельного тела, то потенциальная энергия всегда характеризует как минимум два тела или положение тела во внешнем поле.

—Кинетическая энергия характеризуется скоростью; потенциальная — взаиморасположением тел.

—Основной физический смысл имеет не само значение потенциальной энергии, а её изменение.

—Также потенциальная энергия является характеристикой взаимодействия нескольких тел или тела и поля.

—Любая физическая система стремится к состоянию с наименьшей потенциальной энергией.

—Чтобы увеличить расстояние тела от центра Земли (поднять тело), над ним следует совершить работу. Эта работа против силы тяжестизапасается в виде потенциальной энергии тела.

7.Если: Wп — Потенциальная энергия тела, энергия положения (Джоуль), G — гравитационная сила (Ньютон), m — масса тела (кг), h — высота на которую поднято тело (метр) g — ускорение свободного падения 9.81 (м/c2)

—то, поскольку, работа, затраченная на подъем тела Wп = Gh = mgh, потенциальная энергия тела равна:

Wп= Gh= mgh

—Потенциальная энергия, определяемая по формуле (1), не является полной потенциальной энергией тела, а представляет собой только приращение потенциальной энергии при подъеме тела на высоту h, поскольку начало отсчета выбирается произвольно.

Потенциальная энергия (примечания)

— Если тело опускается с высоты h, то выделяется определяемая формулами (1) и (4) энергия Wп, зависящая от расстояния, на которое опустилось тело.  — Если тело падает с высоты h, то его потенциальная энергия Wпцеликом превращается в кинетическую энергию Wк (энергию движения).

9. Поле центральных сил. Потенциальная энергия системы. Потенциальная энергия гравитационного и упругого взаимодействия.

Поле центральных сил- это поле характерное тем что направление силы действующей на частицу в любой точке пространства проходит через неподвижный центр а величина силы зависит только от расстояния доэтого центра F=F(r). Согласно E= Ei= Ti+ Ui=const полная механическая энергия системы независимо действующих частиц на некоторые действуют толькоконсервативные силы, остаётся постоянной. Это утверждение выражает закон сохранения энергии для указанной механической системы. Согласно формуле A=kx2/2 как для расширения, так и для сжатия пружины на величину x необходимо затратить работу A=kx2/2. Эта работа идет на увеличение потенциальной энергии пружины. Зависимость потенциальной энергии пружины от удлинения имеет вид U=kx2/2 где k-коэффициент жесткости пружины (эта формула написана в предположении, что потенциальная энергия недеформированной пружины равна нулю). При упругой продольной деформации стержня совершается работа, определяемая формулой A=1/2(Es/l0)( l)2=1/2Esl0( l/l0)2=1/2Ev 2. В соответствии с этим потенциальная энергия упруго деформируемого стержня равна U=(E 2/2)V, где  - относительная деформация  =x/l, E - модуль Юнга, а V - это объём тела. Потенциальная энергия в поле тяготения. Епот=-GmM/r.

Потенциальная энергия системы Энергия обусловленная взаимодействием тел, или частями одного и того же тела. Потенциальная энергия - часть общей механической энергии системы, зависящая от взаимного расположения частиц, составляющих эту систему, и от их положений во внешнем силовом поле (например, гравитационном; см. Поля физические).  Численно П. э. системы в данном её положении равна:  работе, которую произведут действующие на систему силы при перемещении системы из этого положения в то, где П. э. условно принимается равной нулю (П = 0). Из определения следует, что понятие П. э. имеет место только для консервативных систем, т. е. систем, у которых работа действующих сил зависит только от начального и конечного положения системы.  Так, для груза весом Р, поднятого на высоту h, П. э. будет равна П = Ph (П = 0 при h = 0); для груза, прикрепленного к пружине, П = 0,5сl2, где l — удлинение (сжатие) пружины, с — её коэффициент жёсткости (П = 0 при l = 0); для двух частиц с массами m1 и m2, притягивающихся по закону всемирного тяготения, П = —fm1m2/r, где f — гравитационная постоянная, r — расстояние между частицами (П = 0 при r = ¥); аналогично определяется П. э. двух точечных зарядов e1 и e2

Потенциальная энергия гравитационного взаимодействия системы двух материальных точек с массами т и М, находящихся на расстоянии rодна от другой, равна

(11)

где – гравитационная постоянная, а нуль отсчета потенциальной энергии (Еp = 0) принят при r = ∞. Потенциальная энергия гравитационного взаимодействия тела массой т с Землей, где – высота тела над поверхностью Земли, М3 – масса Земли, R3 – радиус Земли, а нуль отсчета потенциальной энергии выбран при = 0.

(12)

При том же условии выбора нуля отсчета потенциальная энергия гравитационного взаимодействия тела массой т с Землей для малых высот(« R3) равна

Еp = m∙g∙h,

где   – модуль ускорения свободного падения вблизи поверхности Земли.

Потенциальной энергией пружины (или любого упруго деформированного тела) называют величину 

Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией.

Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно x1, тогда при переходе в новое состояние с удлинением x2 сила упругости совершит работу, равную изменению потенциальной энергии, взятому с противоположным знаком:

Потенциальная энергия при упругой деформации – это энергия взаимодействия отдельных частей тела между собой силами упругости