
- •3. Криволинейное движение. Нормальное и тангенциальное ускорение. Радиус кривизны траектории.
- •4. Абсолютно твёрдое тело. Внешние и внутренние силы. Центр масс (центр инерции) механической системы и закон его движения.
- •5. Динамика материальной точки поступательного движения твёрдого тела. Закон инерции и
- •6. Импульс - мера механического движения. Замкнутые системы тел. Закон сохранения импульса
- •Закон сохранения импульса.
- •8. Потенциальная энергия.
- •9. Поле центральных сил. Потенциальная энергия системы. Потенциальная энергия гравитационного и упругого взаимодействия.
- •10. Удар абсолютно упругих и неупругих тел. Скорости тел после удара.
- •11. Элементы кинематики вращательного движения. Связь линейных характеристик движения точек вращающегося тела. Кинематические уравнения вращения твёрдого тела.
- •13. Уравнение динамики вращательного движения твёрдого тела относительно неподвижной оси.
- •14. Кинетическая энергия вращающегося тела. Закон сохранения момента импульса и его связь с изотропностью пространства.
- •15. Образование стоячих волн. Уравнение стоячей волны и его анализ. Узлы и пучности стоячей волны
- •16. Математический маятник. Дифференциальное уравнение колебаний математического маятника. Вывод формулы периода колебаний математического маятника.
- •17. Физический маятник. Дифференциальное уравнение колебаний физического маятника. Вывод формулы периода колебаний физического маятника. Приведённая длина физического маятника.
- •18. Сложение одинаково направленных гармонических колебаний равных частот. Уравнение, амплитуда и фаза результирующего колебания.
- •19. Сложение одинаково направленных гармонических колебаний различных частот. Биения.
- •20. Энергия волны.
- •21. Представление гармонических колебаний с помощью векторных диаграмм.
- •22. Закон изменения со временем амплитуды затухающих колебаний. Коэффициент затухания и логарифмический декремент затухания, их физический смысл.
- •24. Закон изменения со временем амплитуды затухающих колебаний. Коэффициент затухания и логарифмический декремент затухания, их физический смысл.
- •25. Волновая поверхность. Фронт волны. Принцип суперпозиции и границы его применимости. Когерентность волн.
- •26. Гармонические колебания. Дифференциальное уравнение гармонических колебаний. Основные характеристики колебаний: амплитуда, фаза, частота, круговая частота, период.
- •27. Скорость, ускорение и сила в гармоническом колебании материальной точки. Квазиупругая сила.
- •28. Волновые процессы. Механизм образования волн в упругой среде. Продольные и поперечные волны.
- •29. Функции распределения. Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения, вероятностный характер этого закона.
- •30. Средняя кинетическая энергия молекул. Молекулярно-кинетическое толкование абсолютной температуры.
- •32. Число степеней свободы молекул. Закон равномерного распределения энергии по степеням свободы
- •33. Обратимые и необратимые процессы. Круговой процесс (цикл). Тепловые двигатели и холодильные машины. Второе начало термодинамики.
- •34. Цикл Карно и его коэффициент полезного действия для идеального газа. Независимость кпд цикла
- •35. Работа, совершаемая газом при изменении его объёма. Работа, совершаемая в изопроцессах.
- •36. Первое начало термодинамики и его применение к изопроцессам.
- •37. Адиабатический процесс. Работа, совершаемая идеальным газом в адиабатическом процессе.
- •38. Микро- и макросостояния. Статистический вес. Энтропия.
- •39. Идеальный газ. Уравнения состояния идеального газа (Уравнение Клапейрона-Менделеева).
- •40. Теплоёмкость. Зависимость теплоёмкости идеального газа от вида процесса.
- •41. Элементы специальной теории относительности. Преобразования Лоренца. Относительность промежутков времени.
- •43. Элементы специальной теории относительности. Преобразования Лоренца. Относительность длин.
- •44. Элементы релятивистской динамики. Выражение для кинетической энергии материальной точки в релятивистской механике. Взаимосвязь массы и энергии. Энергия связи системы
38. Микро- и макросостояния. Статистический вес. Энтропия.
Способ распределения частиц по ячейкам без учета их номеров называется макросостоянием системы.
В рассматриваемом примере возможны всего пять разных макросостояний (три из них схематически изображены в таблице). 1 – все четыре частицы находятся в левой ячейке, 2 – три частицы в левой ячейке и одна в правой, 3 – две частицы в левой ячейке и две в правой. Ещё два макросостояния симметричны первому и второму.
Возможные макро и микросостояния для модели системы, состоящей из двух ячеек с четырьмя частицами
Способ распределения частиц по ячейкам с учетом их номеров называется микросостоянием системы. Возможные микросостояния представлены в третьей колонке таблицы. Вероятность застать систему невзаимодействующих частиц в любом из перечисленных микросостояний одна и та же. Но число микросостояний, реализующих макросостояние 3, максимальное, и это макросостояние возникает чаще других. Оно является предпочтительным для системы.
Число микросостояний, соответствующих какому-либо макросостоянию системы, называется термодинамической вероятностью (статистическим весом) этого макросостояния. Термодинамическую вероятность будем обозначать буквой W. В последнем столбце приведены значения термодинамической вероятности для первых трех макросостояний. В простом рассматриваемом примере эти числа невелики, тогда как термодинамическая вероятность макросостояний систем, состоящих из большого числа частиц (порядка числа Авогадро), выражается, соответственно, числами очень высоких порядков.
свойства термодинамической вероятности.
1). Равновесие и флуктуации. Если на термодинамическую систему нет внешних воздействий, то в результате теплового движения частиц она случайно оказывается то в одном, то в другом макросостоянии. Но чаще всего осуществляются состояния с высокой термодинамической вероятностью. Равновесному состоянию соответствует максимальная термодинамическая вероятность. Состояния, очень близкие к равновесному, также имеют высокие термодинамические вероятности, и система случайным образом осуществляет переходы между ними вблизи равновесия. Используют термин: термодинамическая вероятность флуктуирует вблизи максимального значения. При этом флуктуируют и некоторые параметры состояния. Например для газа в маленьких локальных областях наблюдаются малые флуктуации давления вблизи равновесного его значения. Также флуктуационным является воздействие молекул жидкости на броуновскую частицу.
Главное свойство термодинамической вероятности: W® max в самопроизвольных процессах.
2). Термодинамическая вероятность – характеристика состояния. Термодинамическая вероятность любого макросостояния системы не зависит от предшествующих и будущих состояний. Изменение термодинамической вероятности при переходе от одного макросостояния к другому не зависит от пути перехода, а зависит только от начального и конечного макросостояний. При циклическом процессе термодинамическая вероятность возвращается к исходному значению.
3). Мультипликативность. Если сложная система состоит из отдельных невзаимодействующих подсистем, то термодинамическая вероятность состояния сложной системы равна произведению термодинамических вероятностей состояний подсистем: .
Последнее свойство не является “удобным”. Физика стремится вводить в рассмотрение не мультипликативные, а аддитивные величины, то есть такие, которые складываются друг с другом (как масса, энергия и др.), а не перемножаются, как термодинамические вероятности. Переход к аддитивным величинам не всегда возможен, но в данном случае придумана очень удобная величина со свойством аддитивности – энтропия.