
- •3. Криволинейное движение. Нормальное и тангенциальное ускорение. Радиус кривизны траектории.
- •4. Абсолютно твёрдое тело. Внешние и внутренние силы. Центр масс (центр инерции) механической системы и закон его движения.
- •5. Динамика материальной точки поступательного движения твёрдого тела. Закон инерции и
- •6. Импульс - мера механического движения. Замкнутые системы тел. Закон сохранения импульса
- •Закон сохранения импульса.
- •8. Потенциальная энергия.
- •9. Поле центральных сил. Потенциальная энергия системы. Потенциальная энергия гравитационного и упругого взаимодействия.
- •10. Удар абсолютно упругих и неупругих тел. Скорости тел после удара.
- •11. Элементы кинематики вращательного движения. Связь линейных характеристик движения точек вращающегося тела. Кинематические уравнения вращения твёрдого тела.
- •13. Уравнение динамики вращательного движения твёрдого тела относительно неподвижной оси.
- •14. Кинетическая энергия вращающегося тела. Закон сохранения момента импульса и его связь с изотропностью пространства.
- •15. Образование стоячих волн. Уравнение стоячей волны и его анализ. Узлы и пучности стоячей волны
- •16. Математический маятник. Дифференциальное уравнение колебаний математического маятника. Вывод формулы периода колебаний математического маятника.
- •17. Физический маятник. Дифференциальное уравнение колебаний физического маятника. Вывод формулы периода колебаний физического маятника. Приведённая длина физического маятника.
- •18. Сложение одинаково направленных гармонических колебаний равных частот. Уравнение, амплитуда и фаза результирующего колебания.
- •19. Сложение одинаково направленных гармонических колебаний различных частот. Биения.
- •20. Энергия волны.
- •21. Представление гармонических колебаний с помощью векторных диаграмм.
- •22. Закон изменения со временем амплитуды затухающих колебаний. Коэффициент затухания и логарифмический декремент затухания, их физический смысл.
- •24. Закон изменения со временем амплитуды затухающих колебаний. Коэффициент затухания и логарифмический декремент затухания, их физический смысл.
- •25. Волновая поверхность. Фронт волны. Принцип суперпозиции и границы его применимости. Когерентность волн.
- •26. Гармонические колебания. Дифференциальное уравнение гармонических колебаний. Основные характеристики колебаний: амплитуда, фаза, частота, круговая частота, период.
- •27. Скорость, ускорение и сила в гармоническом колебании материальной точки. Квазиупругая сила.
- •28. Волновые процессы. Механизм образования волн в упругой среде. Продольные и поперечные волны.
- •29. Функции распределения. Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения, вероятностный характер этого закона.
- •30. Средняя кинетическая энергия молекул. Молекулярно-кинетическое толкование абсолютной температуры.
- •32. Число степеней свободы молекул. Закон равномерного распределения энергии по степеням свободы
- •33. Обратимые и необратимые процессы. Круговой процесс (цикл). Тепловые двигатели и холодильные машины. Второе начало термодинамики.
- •34. Цикл Карно и его коэффициент полезного действия для идеального газа. Независимость кпд цикла
- •35. Работа, совершаемая газом при изменении его объёма. Работа, совершаемая в изопроцессах.
- •36. Первое начало термодинамики и его применение к изопроцессам.
- •37. Адиабатический процесс. Работа, совершаемая идеальным газом в адиабатическом процессе.
- •38. Микро- и макросостояния. Статистический вес. Энтропия.
- •39. Идеальный газ. Уравнения состояния идеального газа (Уравнение Клапейрона-Менделеева).
- •40. Теплоёмкость. Зависимость теплоёмкости идеального газа от вида процесса.
- •41. Элементы специальной теории относительности. Преобразования Лоренца. Относительность промежутков времени.
- •43. Элементы специальной теории относительности. Преобразования Лоренца. Относительность длин.
- •44. Элементы релятивистской динамики. Выражение для кинетической энергии материальной точки в релятивистской механике. Взаимосвязь массы и энергии. Энергия связи системы
34. Цикл Карно и его коэффициент полезного действия для идеального газа. Независимость кпд цикла
Карно от природы рабочего тела.
Цикл Карно (обратимый круговой процесс) состоит из четырёх стадий:
1. Изотермическое расширение (на рисунке — процесс A>Б). В начале процесса рабочее тело имеет температуру TH, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты QH. При этом объём рабочего тела увеличивается.
2. Адиабатическое (изоэнтропическое) расширение (на рисунке — процесс Б>В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.
3. Изотермическое сжатие (на рисунке — процесс В>Г). Рабочее тело, имеющее к тому времени температуру TX, приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты QX.
4. Адиабатическое (изоэнтропическое) сжатие (на рисунке — процесс Г>А). Рабочее тело отсоединяется от холодильника . При этом его температура увеличивается до температуры нагревателя.
Цикл Карно
КПД цикла Карно:
Отсюда видно, что КПД цикла Карно с идеальным газом зависит только от температуры награвателя (Tн) и холодильника (Тх).
Из уравнения следуют выводы:
1. Для повышения КПД тепловой машины нужно увеличить температуру нагревателя и уменьшить температуру холодильника;
2. КПД тепловой машины всегда меньше 1.
Цикл Карно обратим, так как все его составные части являются равновесными процессами.
Кпд Карно цикла η не зависит от свойств рабочего тела (пара, газа и т. п.) и определяется температурами теплоотдатчика T1 и теплоприёмника Т2, η = (T1 - Т2)/Т1. Кпд любой тепловой машины не может быть больше кпд Карно цикла (при тех же T1 и Т2).
35. Работа, совершаемая газом при изменении его объёма. Работа, совершаемая в изопроцессах.
Работа при изобарном расширении газа. Одним из основных термодинамических процессов, совершающихся в большинстве тепловых машин, является процесс расширения газа с совершением работы. Легко определить работу, совершаемую при изобарном расширении газа.
Если при изобарном расширении газа от объема V1 до объема V2 происходит перемещение поршня в цилиндре на расстояние l (рис. 106), то работа A', совершенная газом, равна
,
(33.1)
где p — давление газа, — изменение его объема.
Как видно из рисунка 107, при изображении изобарного процесса расширения газа в координатных осях p , V площадь фигуры, ограниченной графиком процесса, кординатами V1 и V2, осью абсцисс, пропорциональна работе газа A'.
Работа при произвольном процессе расширения газа. Произвольный процесс расширения газа от объема V1 до объема V2 можно представить как совокупность чередующихся изобарных и изохорных процессов.
При изохорных процессах работа равна нулю, так как поршень в цилиндре не перемещается. Работа при изобарных процессах пропорциональна площади фигуры на диаграмме p, V под соответствующим участком изобары (рис. 108).
Следовательно, работа при произвольном процессе расширения газа прямо пропорциональна площади фигуры под соответствующим участком графика процесса на диаграмме p, V.
Работа при изотермическом расширении газа. Сравнивая площади фигур под участками изотермы и изобары (рис. 109), можно сделать вывод, что расширение газа от объема V1 до объема V2 при одинаковом начальном значении давления газа сопровождается в случае изобарного расширения совершением большей работы.
Работа при сжатии газа. При расширении газа направление вектора силы давления газа совпадает с направлением вектора перемещения, поэтому работа A', совершенная газом, положительна (A' > 0), а работа А внешних сил отрицательна: A = -A' < 0.
При сжатии газа направление вектора внешней силы совпадает с направлением перемещения, поэтому работа А внешних сил положительна (A > 0), а работа A', совершенная газом, отрицательна (A' < 0).
При
расширении работа, совершаемая газом,
положительна, при сжатии – отрицательна.
В общем случае при переходе из некоторого
начального состояния (1) в конечное
состояние (2) работа газа выражается
формулой:
или в пределе при ΔVi → 0:
В изохорном процессе (V = const) газ работы не совершает, A = 0.
В изобарном процессе (p = const) работа, совершаемая газом, выражается соотношением: A = p (V2 – V1) = pΔV.
В изотермическом процессе температура газа не изменяется, следовательно, не изменяется и внутренняя энергия газа, ΔU = 0.
Первый закон термодинамики для изотермического процесса выражается соотношением Q = A.
Количество теплоты Q, полученной газом в процессе изотермического расширения, превращается в работу над внешними телами. При изотермическом сжатии работа внешних сил, произведенная над газом, превращается в тепло, которое передается окружающим телам.
Наряду с изохорным, изобарным и изотермическим процессами в термодинамике часто рассматриваются процессы, протекающие в отсутствие теплообмена с окружающими телами. Сосуды с теплонепроницаемыми стенками называются адиабатическими оболочками, а процессы расширения или сжатия газа в таких сосудах называются адиабатическими.
Работа газа в адиабатическом процессе выражается через температуры T1 и T2 начального и конечного состояний: A = CV (T2 – T1).