Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГОТОВАЯ ШПОРА ФИЗИКА.docx
Скачиваний:
4
Добавлен:
01.04.2025
Размер:
904.16 Кб
Скачать

29. Функции распределения. Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения, вероятностный характер этого закона.

Фу́нкция распределе́ния в теории вероятностей — функция, характеризующая распределение случайной величины или случайного вектора. При соблюдении известных условий (см. ниже) полностью определяет случайную величину.

Определение

Пусть дано вероятностное пространство  , и на нём определена случайная величина   с распределением  . Тогда функцией распределения случайной величины   называется функция  , задаваемая формулой:

.

То есть функцией распределения (вероятностей) случайной величины   называют функцию  , значение которой в точке   равно вероятности события  , то есть события, состоящего только из тех элементарных исходов, для которых  .

[править]Свойства

 непрерывна справа:[1]

 не убывает на всей числовой прямой.

.

.

Распределение случайной величины   однозначно определяет функцию распределения.

Верно и обратное: если функция   удовлетворяет четырём перечисленным выше свойствам, то существует вероятностное пространство и определённая на нём случайная величина, такая что   является её функцией распределения.

По определению непрерывности справа, функция   имеет правый предел   в любой точке  , и он совпадает со значением функции   в этой точке.

В силу неубывания, функция   также имеет и левый предел   в любой точке  , который может не совпадать со значением функции. Таким образом, функция   либо непрерывна в точке, либо имеет в ней разрыв первого рода.

Тождества

Из свойств вероятности следует, что  , таких что  :

;

;

;

;

;

;

;

;

Закон Максвелла описывается некоторой функцией f(ν), которая называется функцией распределения молекул по скоростям. Если разбить диапазон скоростей молекул на малые интервалы, которые равны dν, то на каждый интервал скорости приходится число молекул dN(ν), имеющих скорость, которая заключена в этом интервале. Функция f(ν) задает относительное число молекул dN(ν)/N, скорости которых находятся в интервале от ν до ν+dν, т. е.    откуда    Применяя методы теории вероятностей, Максвелл получил функцию f(ν) — закон о распределеня молекул идеального газа по скоростям:   (1) 

При выводе закона распределения молекул по скоростям Максвелл предполагал, что газ состоит из очень большого числа N тождественных молекул, находящихся в состоянии беспорядочного теплового движения при одинаковой температуре. Пред­полагалось также, что силовые поля на газ не действуют.

Закон Максвелла описывается некоторой функцией f(v), называемой функцией распределения молекул по скоростям. Если разбить диапазон скоростей молекул на малые интервалы, равные dv, то на каждый интервал скорости будет приходиться некоторое число молекул dN(v), имеющих скорость, заключенную в этом интервале. Функция f(v)определяет относительное число молекул dN(v)/N, скорости которых лежат в интервале от v до v+dv, т. е.

откуда

Применяя методы теории вероятностей. Максвелл нашел функцию f(v) — закон о распределеня молекул идеального газа по скоростям:

                                          (44.1)

Уравнения Максвелла – наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. В учении об электромагнетизме они играют такую же роль, как законы Ньютона в механике. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле связано с порождаемым им магнитным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом – они образуют единое электромагнитное поле

Из уравнений Максвелла следует, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическими токами), либо переменными электрическими полями. Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных