- •3. Криволинейное движение. Нормальное и тангенциальное ускорение. Радиус кривизны траектории.
- •4. Абсолютно твёрдое тело. Внешние и внутренние силы. Центр масс (центр инерции) механической системы и закон его движения.
- •5. Динамика материальной точки поступательного движения твёрдого тела. Закон инерции и
- •6. Импульс - мера механического движения. Замкнутые системы тел. Закон сохранения импульса
- •Закон сохранения импульса.
- •8. Потенциальная энергия.
- •9. Поле центральных сил. Потенциальная энергия системы. Потенциальная энергия гравитационного и упругого взаимодействия.
- •10. Удар абсолютно упругих и неупругих тел. Скорости тел после удара.
- •11. Элементы кинематики вращательного движения. Связь линейных характеристик движения точек вращающегося тела. Кинематические уравнения вращения твёрдого тела.
- •13. Уравнение динамики вращательного движения твёрдого тела относительно неподвижной оси.
- •14. Кинетическая энергия вращающегося тела. Закон сохранения момента импульса и его связь с изотропностью пространства.
- •15. Образование стоячих волн. Уравнение стоячей волны и его анализ. Узлы и пучности стоячей волны
- •16. Математический маятник. Дифференциальное уравнение колебаний математического маятника. Вывод формулы периода колебаний математического маятника.
- •17. Физический маятник. Дифференциальное уравнение колебаний физического маятника. Вывод формулы периода колебаний физического маятника. Приведённая длина физического маятника.
- •18. Сложение одинаково направленных гармонических колебаний равных частот. Уравнение, амплитуда и фаза результирующего колебания.
- •19. Сложение одинаково направленных гармонических колебаний различных частот. Биения.
- •20. Энергия волны.
- •21. Представление гармонических колебаний с помощью векторных диаграмм.
- •22. Закон изменения со временем амплитуды затухающих колебаний. Коэффициент затухания и логарифмический декремент затухания, их физический смысл.
- •24. Закон изменения со временем амплитуды затухающих колебаний. Коэффициент затухания и логарифмический декремент затухания, их физический смысл.
- •25. Волновая поверхность. Фронт волны. Принцип суперпозиции и границы его применимости. Когерентность волн.
- •26. Гармонические колебания. Дифференциальное уравнение гармонических колебаний. Основные характеристики колебаний: амплитуда, фаза, частота, круговая частота, период.
- •27. Скорость, ускорение и сила в гармоническом колебании материальной точки. Квазиупругая сила.
- •28. Волновые процессы. Механизм образования волн в упругой среде. Продольные и поперечные волны.
- •29. Функции распределения. Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения, вероятностный характер этого закона.
- •30. Средняя кинетическая энергия молекул. Молекулярно-кинетическое толкование абсолютной температуры.
- •32. Число степеней свободы молекул. Закон равномерного распределения энергии по степеням свободы
- •33. Обратимые и необратимые процессы. Круговой процесс (цикл). Тепловые двигатели и холодильные машины. Второе начало термодинамики.
- •34. Цикл Карно и его коэффициент полезного действия для идеального газа. Независимость кпд цикла
- •35. Работа, совершаемая газом при изменении его объёма. Работа, совершаемая в изопроцессах.
- •36. Первое начало термодинамики и его применение к изопроцессам.
- •37. Адиабатический процесс. Работа, совершаемая идеальным газом в адиабатическом процессе.
- •38. Микро- и макросостояния. Статистический вес. Энтропия.
- •39. Идеальный газ. Уравнения состояния идеального газа (Уравнение Клапейрона-Менделеева).
- •40. Теплоёмкость. Зависимость теплоёмкости идеального газа от вида процесса.
- •41. Элементы специальной теории относительности. Преобразования Лоренца. Относительность промежутков времени.
- •43. Элементы специальной теории относительности. Преобразования Лоренца. Относительность длин.
- •44. Элементы релятивистской динамики. Выражение для кинетической энергии материальной точки в релятивистской механике. Взаимосвязь массы и энергии. Энергия связи системы
26. Гармонические колебания. Дифференциальное уравнение гармонических колебаний. Основные характеристики колебаний: амплитуда, фаза, частота, круговая частота, период.
Гармонические колебания, колебания, при которых физическая величина изменяется с течением времени по закону синуса или косинуса. Графически Г. к. изображаются кривой — синусоидой или косинусоидой (см. рис.); они могут быть записаны в форме: х = Asin (wt + j) или х = Acos (wt + j), где х— значение колеблющейся величины в данный момент времени t (для механических Г. к., например, смещение или скорость, для электрических Г. к. — напряжение или сила тока), А — амплитуда колебаний, w — угловая частота колебаний, (w + j) — фаза колебаний, j — начальная фаза колебаний.
Г. к. занимают среди всех разнообразных форм колебаний важное место, оно определяется двумя обстоятельствами. Во-первых, в природе и в технике очень часто встречаются колебательные процессы, по форме близкие к Г. к. Во-вторых, очень широкий класс систем, свойства которых можно считать неизменными (например, электрические цепи, у которых индуктивность, ёмкость и сопротивление не зависят от напряжения и силы тока в цепи), по отношению к Г. к. ведут себя особым образом: при воздействии на них Г. к. совершаемые ими вынужденные колебания имеют также форму Г. к. (когда форма внешнего воздействия отличается от Г. к., форма вынужденного колебания системы всегда отличается от формы внешнего воздействия). Иначе говоря, в большинстве случаев Г. к. единственный тип колебаний, форма которых не искажается при воспроизведении; это и определяет особое значение Г. к., а также возможность представления негармонических колебаний в виде гармонического спектра колебаний.
Гармоническое колебание — колебания, при которых физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону. Кинематическое уравнение гармонических колебаний имеет вид
или
,
где х —
смещение (отклонение) колеблющейся
точки от положения равновесия в момент
времени t; А — амплитуда колебаний,
это величина, определяющая максимальное
отклонение колеблющейся точки от
положения равновесия;ω — циклическая
частота, величина, показывающая число
полных колебаний происходящих в течение
2π секунд
—
полная фаза колебаний,
—
начальная фаза колебаний.
Обобщенное гармоническое колебание в дифференциальном виде
(Любое
нетривиальное[1] решение
этого дифференциального уравнения —
есть гармоническое колебание с
циклической частотой
)
Фаза колебания
Фаза колебания - это аргумент гармонической функции: ( ωt + α ). Начальная фаза α - это значение фазы в начальный момент времени, т.е. при t = 0.
14.1.1.2. Амплитуда колебания
Амплитуда колебанияA - это наибольшее значение колеблющейся величины.
Круговая или циклическая частота ω
При изменении аргумента косинуса, либо синуса на 2π эти функции возвращаются к прежнему значению. Найдем промежуток времени T, в течение которого фаза гармонической функции изменяется на 2π .
ω(t + T) +α = ωt + α + 2π,
или
ωT = 2π.
.
Время T одного полного колебания называется периодом колебания. Частотойν называют величину, обратную периоду
.
Единица измерения частоты - герц (Гц), 1 Гц = 1 с-1.
Так как
,
то
.
Круговая, или циклическая частоты ω в 2π раз больше частоты колебаний ν. Круговая частота - это скорость изменения фазы со временем. Действительно:
.
