
- •3. Криволинейное движение. Нормальное и тангенциальное ускорение. Радиус кривизны траектории.
- •4. Абсолютно твёрдое тело. Внешние и внутренние силы. Центр масс (центр инерции) механической системы и закон его движения.
- •5. Динамика материальной точки поступательного движения твёрдого тела. Закон инерции и
- •6. Импульс - мера механического движения. Замкнутые системы тел. Закон сохранения импульса
- •Закон сохранения импульса.
- •8. Потенциальная энергия.
- •9. Поле центральных сил. Потенциальная энергия системы. Потенциальная энергия гравитационного и упругого взаимодействия.
- •10. Удар абсолютно упругих и неупругих тел. Скорости тел после удара.
- •11. Элементы кинематики вращательного движения. Связь линейных характеристик движения точек вращающегося тела. Кинематические уравнения вращения твёрдого тела.
- •13. Уравнение динамики вращательного движения твёрдого тела относительно неподвижной оси.
- •14. Кинетическая энергия вращающегося тела. Закон сохранения момента импульса и его связь с изотропностью пространства.
- •15. Образование стоячих волн. Уравнение стоячей волны и его анализ. Узлы и пучности стоячей волны
- •16. Математический маятник. Дифференциальное уравнение колебаний математического маятника. Вывод формулы периода колебаний математического маятника.
- •17. Физический маятник. Дифференциальное уравнение колебаний физического маятника. Вывод формулы периода колебаний физического маятника. Приведённая длина физического маятника.
- •18. Сложение одинаково направленных гармонических колебаний равных частот. Уравнение, амплитуда и фаза результирующего колебания.
- •19. Сложение одинаково направленных гармонических колебаний различных частот. Биения.
- •20. Энергия волны.
- •21. Представление гармонических колебаний с помощью векторных диаграмм.
- •22. Закон изменения со временем амплитуды затухающих колебаний. Коэффициент затухания и логарифмический декремент затухания, их физический смысл.
- •24. Закон изменения со временем амплитуды затухающих колебаний. Коэффициент затухания и логарифмический декремент затухания, их физический смысл.
- •25. Волновая поверхность. Фронт волны. Принцип суперпозиции и границы его применимости. Когерентность волн.
- •26. Гармонические колебания. Дифференциальное уравнение гармонических колебаний. Основные характеристики колебаний: амплитуда, фаза, частота, круговая частота, период.
- •27. Скорость, ускорение и сила в гармоническом колебании материальной точки. Квазиупругая сила.
- •28. Волновые процессы. Механизм образования волн в упругой среде. Продольные и поперечные волны.
- •29. Функции распределения. Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения, вероятностный характер этого закона.
- •30. Средняя кинетическая энергия молекул. Молекулярно-кинетическое толкование абсолютной температуры.
- •32. Число степеней свободы молекул. Закон равномерного распределения энергии по степеням свободы
- •33. Обратимые и необратимые процессы. Круговой процесс (цикл). Тепловые двигатели и холодильные машины. Второе начало термодинамики.
- •34. Цикл Карно и его коэффициент полезного действия для идеального газа. Независимость кпд цикла
- •35. Работа, совершаемая газом при изменении его объёма. Работа, совершаемая в изопроцессах.
- •36. Первое начало термодинамики и его применение к изопроцессам.
- •37. Адиабатический процесс. Работа, совершаемая идеальным газом в адиабатическом процессе.
- •38. Микро- и макросостояния. Статистический вес. Энтропия.
- •39. Идеальный газ. Уравнения состояния идеального газа (Уравнение Клапейрона-Менделеева).
- •40. Теплоёмкость. Зависимость теплоёмкости идеального газа от вида процесса.
- •41. Элементы специальной теории относительности. Преобразования Лоренца. Относительность промежутков времени.
- •43. Элементы специальной теории относительности. Преобразования Лоренца. Относительность длин.
- •44. Элементы релятивистской динамики. Выражение для кинетической энергии материальной точки в релятивистской механике. Взаимосвязь массы и энергии. Энергия связи системы
24. Закон изменения со временем амплитуды затухающих колебаний. Коэффициент затухания и логарифмический декремент затухания, их физический смысл.
22 вопрос это
25. Волновая поверхность. Фронт волны. Принцип суперпозиции и границы его применимости. Когерентность волн.
Волновая поверхность — геометрическое место точек, испытывающих возмущение обобщенной координаты в одинаковой фазе. Если источником волны является точка, то волновые поверхности в однородном и изотропном пространстве представляют собой концентрические сферы.
Фронт волны — геометрическое место точек, до которого к некоторому моменту времени дошёл колебательный процесс. Фронт волны — частный случай волновой поверхности.
Геометрическое место точек, колеблющихся в одной фазе, называется волновой поверхностью. Волновая поверхность, отделяющая часть пространства, в которой колебания происходят, от той части, где еще нет колебаний, называется фронтом волны. Именно фронт волны перемещается со скоростью равной фазовой скорости волны. В случае одномерной синусоидальной волны уравнение волновой поверхности имеет следующий вид:
Этому условию в каждый момент времени удовлетворяет только одна точка оси ОХ, координата х которой равна:
Различным
значениям фазы волны φ соответствуют
различные волновые поверхности, каждая
из которых в одномерных волнах вырождается
в точку. Из последней формулы видно,
что волновые поверхности с течением
времени перемещаются в среде со
скоростью, равной
,
т.е. фазовой скоростью, которая равна
Таким образом, для синусоидальной волны скорость распостранения поверхности постоянной фазы совпадает со скоростью распространения волны.
Поверхности равной фазы называют волновыми поверхностями. В случае плоской волны волновые поверхности представляют собой плоскости. А что представляют собой поверхности в случае сферической волны? Отвтетьте в рабочей тетради.
Линии нормальные к волновой поверхности называют лучами. Вдоль лучей происходит перенос энергии
Лучи в случае плоской волны |
Лучи в случае сферической волны |
|
|
В каждый момент времени можно отделить поверхность, в коротой уже существут волновой процесс, от той, до которой он еще не дошел. Эта движущаяся пограничная поверхность называется фронтом волны. Волновой фронт - это поверхность до которой к данному времени дошли колебания. Волновой фронт - частный случай волновой поверхности.
Ква́нтовая суперпози́ция (когерентная суперпозиция) — это суперпозиция состояний, которые не могут быть реализованы одновременно с классической точки зрения, это суперпозиция альтернативных (взаимоисключающих) состояний. Принцип существования суперпозиций состояний обычно называется в контексте квантовой механики просто принципом суперпозиции.
Если
функции
и
являются
допустимыми волновыми функциями,
описывающими состояние квантовой
системы, то их линейная суперпозиция,
,
также описывает какое-то состояние
данной системы. Если измерение какой-либо
физической величины
в
состоянии
приводит
к определённому результату
,
а в состоянии
—
к результату
,
то измерение в состоянии
приведёт
к результату
или
с
вероятностями
и
соответственно.
Из принципа суперпозиции также следует, что все уравнения на волновые функции (например, уравнение Шрёдингера) в квантовой механике должны быть линейными.
ПРИНЦИП СУПЕРПОЗИЦИИ
В теплофизике — принцип наложения темературных полей, возбуждаемых в теле тепловыми возмущениями на t его границах и (или) внутренними источниками. Результирующее температурное поле получают суммированием полей, создаваемых отдельными воздействиями. Принцип суперпозиции позволяет получать решения сложных задач теплопередачи стационарной и нестационарной путем их разложения на более простые с последующим сложением частных результатов. При этом необходимо, чтобы условия однозначности простых задач (начальное и граничное условия, интенсивность внутренних источников) в сумме соответствовали условиям исходной задачи. Обязательное условие применимости принципа суперпозиции — линейность уравнения теплопроводности и условий однозначности. Линейность нарушается, если какие-либо параметры процесса существенно зависят от температуры. В частности, принцип суперпозиции не применим, если функцией температуры являются теплофизические характеристики материалов, интенсивность внутренних и поверхностных источников, коэффециент теплообмена на границах. Его также нельзя применять, когда действующие факторы взаимосвязаны или результат действия каждого из них, взятого в отдельности, не является линейным. Для большинства теплофизических задач эти ограничения не имеют значения или сказываются несущественно, что способствует широкому использованию принципа суперпозиции в инженерной практике.
Опыт Юнга. Когерентность волн
При наблюдении интерференционной картины возникают некоторые не вполне очевидные трудности. Представим себе, что в качестве источников цилиндрических волн мы попытались использовать нити двух электрических лампочек. Излучение раскаленных нитей осуществляется ускоренным движением электронов в нитях, никак друг с другом не связанных. Такие волны, естественно, не будут иметь одинаковые начальные фазы, которые при записи соответствующих выражений мы просто считали нулевыми. И эти начальные фазы не только различны у рассматриваемых двух волн, но и непостоянны во времени, изменяются случайным образом. Такие волны называют некогерентными.
В принципе нам не обязательно нужно, чтобы начальные фазы колебаний от двух источников были равны. Нам надо, чтобы постоянной во времени была разность фаз этих колебаний. Если это требование выполняется, то волны (или источники) называют когерентными. Это определение когерентности волн (источников волн).
Таким образом, возникает проблема: как добиться того, чтобы источники были когерентными?
Представим себе, что источником (приблизительно) цилиндрических волн является вертикально расположенная раскаленная полоска металла. Понятно, что она будет излучать свет по разным направлениям, как в вертикальной, так и в горизонтальной плоскостях.
Мы связали направление излучения с производной фазы колебаний по координате. Из огромного числа колеблющихся электронов найдутся и такие, которые в данный момент колеблются с (примерно) одинаковой фазой. Их излучение будет направлено по нормали к полоске. Но найдутся и электроны, которые колеблются так, что для них производная фазы по направлению вдоль некоторой прямой, “нарисовано” на поверхности полоски, имеет отличное от нуля значение. Их излучение будет направлено под некоторым углом к излучающей поверхности.
Но пусть какая-то группа электронов излучает волну примерно по нормали, и она попадает затем на экран. Однако, в следующий промежуток времени это будут уже другие электроны, начальная фаза падающей на экран волны будет другой. Но, разумеется, в течение некоторого времени она все же будет иметь какое-то значение, будет (примерно) постоянной. Такое постоянство фазы определяет временную (с ударением на ‘у’)когерентность.
При этом волна не будет направлена строго по одному направлению, она обязательно будет распространяться в некотором телесном угле. Значит, в точках на некоторых расстояниях в поперечном направлении фаза колебаний будет одинаковой. И чем дальше от источника, тем эти расстояния, естественно, будут больше. В таком случае говорят опространственной когерентности.
Поэтому можно, например, осветить пару щелей достаточно удаленным источником электромагнитных колебаний. Например, весьма велика пространственная когерентность у света, который приходит от звезд. Вот только сила света при этом оказывается очень малой.
b
dx 0
L |
Проще (при меньшем удалении от источников и с большей силой света) осветить когерентным светом одну узкую щель. Выделив на ней поперечную полоску, мы можем надеяться, что в ее пределах колебания будут когерентными. Такая полоска может рассматриваться как система непрерывно расположенных точечных источников, зависимость амплитуды волны от угла мы с Вами ранее посчитали:
Щель
S S’
D
Линза S’’ экран
Чем уже щель, тем больше угол, в пределах которого происходит излучения. И в пределах этого угла излучение будет когерентным.
Эта идея реализована в классическом опыте Юнга. На экране наблюдается интерференция когерентных волн от двух щелей, которые, в свою очередь, освещаются цилиндрической волной от одиночной щели.
Длина когерентности
В опыте Юнга обеспечивается когерентность (постоянство разности фаз колебаний) двух источников света - параллельных щелей. Естественно, при некогерентных источниках интерференционная картина наблюдаться не может. Но для успешности наблюдения интерференционной картины оказывается важной и временная когерентность. При этом оказывается более удобным говорить о длине когерентности. Она определяется как характерное время, в течение которого фаза колебаний волны остается постоянной, умноженное на скорость света в вакууме.
Действительно, при удалении от центра экрана увеличивается разность хода лучей от источников S’ и S”. И если разность хода больше длины когерентности, то мы опять-таки не сможем наблюдать интерференционую картину.
Сделаем такое (достаточно очевидное) утверждение: “чисто” синусоидальных волн в природе не бывает. Ближе всего к такой волне излучение лазера, но и для него длина когерентности конечна, хотя и весьма велика. Но любая реальная волна представляет собой сумму больше или меньше отличающихся по частоте синусоидальных волн.
Интенсивность излучения, таким образом, некоторым образом распределена по оси частот (или длин волн). В этой связи говорят о ширине спектральной полосы, и в вопросе о том, как связана длина когерентности с разностью длин волн нам вновь поможет рассмотрение биений.
Предположим, что волна света при наблюдении интерференции в опыте Юнга представляет собой сумму двух синусоидальных волн. Как мы знаем, амплитуда суммарных колебаний изменяется по закону
.
Следовательно, изменение фазы происходит через время t, которое определяется условием
;
и длина когерентности
.
С другой стороны мы имеем:
;
.
По смыслу длина когерентности - величина положительная. Беря поэтому соответствующие величины по модулю, имеем:
.
Подойдем теперь к этому вопросу с другой стороны. Предположим, мы проводим опыт Юнга с такой волной - суммой волн с близкими частотами. Для них расстояния между минимумами x различны:
.
На такую величину интерференционный максимум одной длины волны сдвинут по отношению к максимуму другой. Если взять достаточно большое количество максимумов n, то сдвиг равен n x и если он окажется равным половине (средней для этих волн) ширины интерференционного максимума, картинка “смажется”. Заметив, что для максимума с номером n разность хода лучей равна n(лямбда), мы получим:
;
;
.
Таким образом, длина когерентности оказывается величиной порядка разности хода, при которой интерференционная картина уже не наблюдается.