
- •1.Означення та приклади подій : випадкова, достовірна, неможлива, елементарна, складна.
- •2.Означення та приклад повної групи подій та простору елементарних подій.
- •3.Класичне означення ймовірності випадкової події
- •5.Дати означення відносної частоти появи події.
- •6. Дати геометричне та статистичне означення ймовірностей.
- •7.Дати визначення умовної ймовірності.
- •8.Формула множення ймовірностей для залежних та незалежних подій.
- •9.Формула для обчислення появи хоча б однієї події.
- •10. Формула повної ймовірності
- •11.Формула Баєса.
- •13.Формула Бернуллі для обчислення ймовірностей,умова використання. Наслідки.
- •14. Найімовірніше число наступів події в схемі Бернуллі.
- •15.Сформулювати локальну теорему Мауавра-Лапласа.
- •16.Сформулювати інтегральну теорему Мауавра-Лапласа.
- •17.Функція Гаусса та її властивості
- •18.Функція Лапласа та її властивості.
- •19.Формула Пуассона,умови її використання.
- •20.Означення випадкової величини, дискретної та неперервної випадкової величини.
- •21.Закон розподілу випадкової величини.
- •22.Інтегральна функція розподілу випадкової величини: означення.Властивості.
- •30.Означення закону розподілу багатовимірної випадкової величини.
- •32. Коефіцієнт кореляції та його властивості
- •Щільність імовірностей системи п випадкових величин є функція
- •34.Двовимірний нормальний закон.
- •35.Біномінальний закон розподілу двв, числові характеристики.
- •36. Пуасонівський закон розподілу двв, числові характеристики.
- •37.Геометрический закон розподілу двв, числові характеристики.
- •38. Гіпергеометричний закон розподілу двв, числові характеристики.
- •39.Рівномірний закон розподілу.
- •40. . Нормальний закон розподілу
- •41.Показниковий закон та його використання в теорії надійності та теорії черг.
- •43. Правило трьох сигм. Логарифмічний нормальний закон розподілу
- •45. Теорема Чебишова
- •46. ) Теорема Бернулі
- •48.Предмет і задачі математичної статистики.
- •49. Утворення вибірки. Генеральна та вибіркова сукупність.
- •50. Статистичним розподілом вибірки
- •51.Емпірична функція розподілу, гістограма та полігон.
- •52.Числові характеристики : вибіркова середня, дисперсія вибірки, середньоквадратичне відхилення.
- •53.Мода й медіана,емпіричні початкові та центральні моменти, асиметрія та ексцес.
- •54.Дати визначення статистичної оцінки.
- •55.Точкові та інтервальні статистичні оцінки.
- •56.Дати визначення довірчого інтервалу.
- •57.Що таке нульова та альтернативна статистичні гіпотези.
- •58.Перевірки правдивості нульової гіпотези про нормальний закон розподілу ознаки генеральної сукупності.
- •59.Емпіричні та теоретичні частоти.
- •60.Критерії узгодження Пірсона та Колмогорова.
- •61.Помилки 1-го і 2-го роду.
- •62.Статистичний критерій.Критична область.
- •63.Дати означення моделі експерименту.
- •64.Дати поняття одно фактичний аналіз.
- •65.Що таке таблиця результатів.
- •66.Загальна дисперсія,між групова та внутрішньо групова дисперсія.
- •67.Загальний метод перевірки впливу фактора на ознаку способом порівняння дисперсії.
- •68.Поняття про функціональна ,статистична і кореляційна залежності.
- •70. Вибірковий коефіцієнт кореляції
- •71. Множина регресії ,множинний коєфіцієнт кореляції та його властивості .
38. Гіпергеометричний закон розподілу двв, числові характеристики.
Гіпергеометричний закон розподілу має випадкова величина X , якщо вона набуває
послідовні невід’ємні цілі значення, а відповідні ймовірності знаходяться за формулою
P
(X=k)=
де K,m,N,M – невід’ємні цілі числа.
39.Рівномірний закон розподілу.
Якщо ймовірність потрапляння випадкової величини на інтервал пропорційна до довжини інтервалу і не залежить від розташування інтервалу на осі, то вона має рівномірний закон розподілу. Щільність такого розподілу:
Рівномірний закон розподілу легко моделювати. За допомогою функціональних перетворень із величин, розподілених рівномірно, можна діставати величини з довільним законом розподілу. Числові характеристики розподілу:
40. . Нормальний закон розподілу
задається
щільністю
Параметри
,
які входять до виразу щільності розподілу,
є відповідно математичним сподіванням
та середнім квадратичним відхиленням
випадкової величини. Нормальний
закон розподілу широко застосовується
в математичній статистиці. Для обчислення
ймовірності потрапляння випадкової
величини, розподіленої нормально, на
проміжок використовується функція
Лапласа:
Часто застосовується також формула:
41.Показниковий закон та його використання в теорії надійності та теорії черг.
.
.
Щільність розподілу випадкової величини, розподіленої за показниковим законом, задається формулою:
Випадкові величини з таким законом розподілу широко застосовуються в задачах з теорії надійності та теорії масового обслуговування. Числові характеристики:
Ме=ln2/a.
Серед усіх законів неперервних випадкових величин лише експоненціальному притаманна властивість – відсутність післядії, а саме: якщо пов”язати випадкову величину із часом, то для цього закону минуле не впливає на передбачення подій у майбутньому. Цю властивість закону використовують у харківських випадкових процесах, теорії масового обслуговування, теорії надійності.
42.
Розподіл
Стьюдента.
Розподіл Стьюдента з n
cтупенями волі має випадкова величина
де Х
— нормально розподілена величина з
нульовим математичним сподіванням і
одиничною дисперсією, а
.
Випадкова величина
не залежить від Х
і має розподіл
з
n
ступенями волі. Щільність розподілу
Графік щільності розподілу Стьюдента
за зовнішнім виглядом нагадує нормальні
криві. Але вони значно повільніше
спадають до осі t,
якщо
особливо
за малих значень n
Складено
таблиці розподілу Стьюдента, здебільшого
виду
для кількості ступенів волі від 1 до 20.
Якщо кількість ступенів волі більша,
то можна застосовувати нормальний закон
розподілу з нульовим математичним
сподіванням і одиничною дисперсією.
M(Z)=0.
.
Розподіл
Фішера.
Якщо випадкові величини
незалежні і мають
— розподіл відповідно з
ступенями волі, то випадкова величина
має розподіл Фішера з
ступенями волі. Щільність цього розподілу
подається формулою:
Щільність
розподілу Фішера має графік, зображений
на
Для
розподілу Фішера складено таблиці, в
яких для відповідної кількості ступенів
волі для ймовірностей
наведено значення
–