
- •1.Означення та приклади подій : випадкова, достовірна, неможлива, елементарна, складна.
- •2.Означення та приклад повної групи подій та простору елементарних подій.
- •3.Класичне означення ймовірності випадкової події
- •5.Дати означення відносної частоти появи події.
- •6. Дати геометричне та статистичне означення ймовірностей.
- •7.Дати визначення умовної ймовірності.
- •8.Формула множення ймовірностей для залежних та незалежних подій.
- •9.Формула для обчислення появи хоча б однієї події.
- •10. Формула повної ймовірності
- •11.Формула Баєса.
- •13.Формула Бернуллі для обчислення ймовірностей,умова використання. Наслідки.
- •14. Найімовірніше число наступів події в схемі Бернуллі.
- •15.Сформулювати локальну теорему Мауавра-Лапласа.
- •16.Сформулювати інтегральну теорему Мауавра-Лапласа.
- •17.Функція Гаусса та її властивості
- •18.Функція Лапласа та її властивості.
- •19.Формула Пуассона,умови її використання.
- •20.Означення випадкової величини, дискретної та неперервної випадкової величини.
- •21.Закон розподілу випадкової величини.
- •22.Інтегральна функція розподілу випадкової величини: означення.Властивості.
- •30.Означення закону розподілу багатовимірної випадкової величини.
- •32. Коефіцієнт кореляції та його властивості
- •Щільність імовірностей системи п випадкових величин є функція
- •34.Двовимірний нормальний закон.
- •35.Біномінальний закон розподілу двв, числові характеристики.
- •36. Пуасонівський закон розподілу двв, числові характеристики.
- •37.Геометрический закон розподілу двв, числові характеристики.
- •38. Гіпергеометричний закон розподілу двв, числові характеристики.
- •39.Рівномірний закон розподілу.
- •40. . Нормальний закон розподілу
- •41.Показниковий закон та його використання в теорії надійності та теорії черг.
- •43. Правило трьох сигм. Логарифмічний нормальний закон розподілу
- •45. Теорема Чебишова
- •46. ) Теорема Бернулі
- •48.Предмет і задачі математичної статистики.
- •49. Утворення вибірки. Генеральна та вибіркова сукупність.
- •50. Статистичним розподілом вибірки
- •51.Емпірична функція розподілу, гістограма та полігон.
- •52.Числові характеристики : вибіркова середня, дисперсія вибірки, середньоквадратичне відхилення.
- •53.Мода й медіана,емпіричні початкові та центральні моменти, асиметрія та ексцес.
- •54.Дати визначення статистичної оцінки.
- •55.Точкові та інтервальні статистичні оцінки.
- •56.Дати визначення довірчого інтервалу.
- •57.Що таке нульова та альтернативна статистичні гіпотези.
- •58.Перевірки правдивості нульової гіпотези про нормальний закон розподілу ознаки генеральної сукупності.
- •59.Емпіричні та теоретичні частоти.
- •60.Критерії узгодження Пірсона та Колмогорова.
- •61.Помилки 1-го і 2-го роду.
- •62.Статистичний критерій.Критична область.
- •63.Дати означення моделі експерименту.
- •64.Дати поняття одно фактичний аналіз.
- •65.Що таке таблиця результатів.
- •66.Загальна дисперсія,між групова та внутрішньо групова дисперсія.
- •67.Загальний метод перевірки впливу фактора на ознаку способом порівняння дисперсії.
- •68.Поняття про функціональна ,статистична і кореляційна залежності.
- •70. Вибірковий коефіцієнт кореляції
- •71. Множина регресії ,множинний коєфіцієнт кореляції та його властивості .
13.Формула Бернуллі для обчислення ймовірностей,умова використання. Наслідки.
Імовірність того, що в n незалежних випробуваннях, у кожному з яких імовірність Р(А) = р, подія А відбудеться m раз, подається так:
Формула
застосовується, якщо
Імовірність
того, що в результаті n незалежних
експериментів подія А
з’явиться від mi
до
mj
раз,
обчислюється так:
Умови використання. Якщо відбувається декілька випробувань, причому ймовірність події А в кожному з випробувань не залежить від результатів інших випробувань, то такі випробування називають незалежними відносно події А.
В різних незалежних випробуваннях подія А може мати або різні ймовірності, або одну й ту ж саму ймовірність. Будемо розглядати тільки варіант зі сталою ймовірністю.
Нехай відбувається n незалежних випробувань, в кожному з яких подія А може з'явитися або не з'явитися. Домовимося вважати, що ймовірність події А в кожному з випробувань стала, а саме дорівнює p. Тоді, ймовірність ненастання події А в кожному з випробувань також стала і дорівнює q = 1 - p.
Поставимо собі задачу обчислити ймовірність того, що при n випробуваннях подія А відбудеться рівно k разів і, відповідно, не відбудеться n - k разів. Важливо підкреслити, що не вимагається, щоб подія А повторилась рівно k разів в певній послідовності.
Поставлену задачу можно вирішити за допомогою формули Бернулі.
14. Найімовірніше число наступів події в схемі Бернуллі.
Якщо проводиться n незалежних випробувань, в кожному з яких ймовірність появи події А одна і та ж і дорівнює p, то ймовірність того, що подія А з'явиться в цих n випробуваннях m раз, виражається формула Бернуллі
Pn(m) = Cnk·pm·qn-m, де q = 1-p. Число m0 називається найімовірнішим числом наступів події А в n випробуваннях і одно цілої частини числа (n+1)p, а при цілому (n+1)p найбільше значення досягається при двох номерах: m1=(n+1)p-1 і m2=(n+1)p. Якщо р≠0 і р≠1, число m0 можна визначити з подвійного нерівності
np-q ≤ m0 ≤ np+p.
15.Сформулювати локальну теорему Мауавра-Лапласа.
Імовірність того, що в n незалежних випробуваннях, у кожному з яких Р(А) = р, подія А відбудеться m раз, подається такою наближеною залежністю:
Локальна
теорема Лапласа дає змогу обчислювати
ймовірності
,
якщо n > 10 i p > 0,1.
16.Сформулювати інтегральну теорему Мауавра-Лапласа.
Імовірність
того, що подія А
відбудеться від
до
раз при проведенні n
незалежних випробувань, у кожному з
яких подія А
відбувається з імовірністю р,
подається формулою:
—функція
Лапласа;
Значення функції Лапласа наводяться у спеціальних таблицях.
17.Функція Гаусса та її властивості
У математиці функцією Гауса (названа за іменем Карла Фрідріха Гауса) є функція, що виражається залежністю
для дійсних чисел константа a > 0, b, c > 0, і e ≈ 2.718281828 (Число Ейлера).
Властивості. Ґаусова функція є такою, що її логарифм дає квадратичну фунцію.
Через
параметр c можна
виразити ширину піку (FWHM) на половині
його висоти згідно з формулою:
Гаусова функція є аналітичною, і її границя при x→±∞ є 0.
Визначений інтеграл від ґаусової функції дає функцію помилок
Визначений інтеграл з нескінченними границями має властивість
Цей інтеграл рівний 1 тоді і тільки тоді, коли a = 1/(c√(2π)), і в цьому випадку Гаусіан є щільністю нормального розподілу випадкової величини з математичним очікуванням μ=b і дисперсією σ2=c2.
При перетворенні Фур'є функції Гауса з параметрами a, b=0 і c отримуємо іншу функцію Гауса, з параметрами ac, b=0 і 1/c. Отже, як частковий випадок, функція Гауса з b=0 і c=1 є інваріантом щодо перетворення Фур'є