Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Матан экзамен.docx
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
890.64 Кб
Скачать

Действия над матрицами.

1. Сложение матриц - поэлементная операция

2. Вычитание матриц - поэлементная операция

3. Произведение матрицы на число - поэлементная операция

4. Умножение A*B матриц по правилу строка на столбец (число столбцов матрицы А должно быть равно числу строк матрицы B)

Amk*Bkn=Cmn причем каждый элемент сij матрицы Cmn равен сумме произведений элементов i-ой строки матрицы А на соответствующие элемеенты j-го столбца матрицы B , т.е.

Покажем операцию умножения матриц на примере

5. Возведение в степень

m>1 целое положительное число. А - квадратная матрица (m=n) т.е. актуально только для квадратных матриц

6. Транспонирование матрицы А. Транспонированную матрицу обозначают AT или A'

Строки и столбцы поменялись местами

3. Обра́тная ма́трица — такая матрица A−1, при умножении на которую, исходная матрица A даёт в результате единичную матрицу E:

Если определитель матрицы равен нулю, то обратная к ней не существует.

Находим сначала детерминант матрицы А      значит, обратная матрица существует и мы ее можем найти по формуле:   , где Аi j (i,j=1,2,3) - алгебраические дополнения элементов аi j исходной матрицы.                    

                    

                   

                  

 откуда    .

4. Система m линейных алгебраических уравнений с n неизвестными (или, линейная система, также употребляется аббревиатура СЛА́У) в линейной алгебре — это система уравнений вида

(1)

Система линейных уравнений от трёх переменных определяет наборплоскостей. Точка пересечения является решением.

Здесь   — количество уравнений, а   — количество неизвестных. x1x2, …, xn — неизвестные, которые надо определить. a11,a12, …, amn — коэффициенты системы — и b1b2, … bm — свободные члены — предполагаются известными[1]

Система линейных уравнений может быть представлена в матричной форме как:

или:

.

Здесь   — это матрица системы,   — столбец неизвестных, а   — столбец свободных членов. Если к матрице   приписать справа столбец свободных членов, то получившаяся матрица называется расширенной.

Система линейных уравнений может:

1) Иметь единственное решение. 2) Иметь бесконечно много решений. 3) Не иметь решений (быть несовместной).

Метод Гаусса - метод последовательного исключения переменных. С помощью элементарных преобразований строк расширенной матрицы D системы матрицу A системы приводят к ступенчатому виду.

Решите систему уравнений 

Решение. Выписываем матрицу системы   и столбец свободных членов   .

Находим определитель системы:   . Определитель отличен от нуля, следовательно, можно применить правило Крамера. Находим дополнительные определители:

Итак,