- •1 Билет
- •Размещения, перестановки, сочетания
- •Свойства чисел
- •Треугольник Паскаля
- •2 Билет
- •3 Билет
- •Операции над событиями
- •4 Билет
- •5 Билет
- •Геометрическая вероятность
- •6 Билет
- •7 Билет
- •8 Билет
- •9 Билет
- •10 Билет
- •11 Билет
- •1)Формула Бернулли Наивероятнейшее число наступлений события.
- •12 Билет
- •13 Билет
- •1)Дискретные случайные величины (дсв). Формы задания закона распределения вероятностей
- •14 Билет
- •15 Билет
- •1) Размещения, перестановки, сочетания
- •Свойства чисел
- •Треугольник Паскаля
- •16 Билет
- •Операции над событиями
- •17 Билет
- •18 Билет
- •1) Формула полной вероятности.
- •19 Билет
- •1) Формула Пуассона
- •20 Билет
- •1)Формула Бейеса
- •2) Функция распределения
- •21 Билет
- •Сложение и умножение вероятностей
- •22 Билет
- •23 Билет
- •2) Классическое определение вероятности события. Свойства вероятности. Аксиоматическое определение вероятности.
- •24 Билет
- •25 Билет
- •Операции над событиями
- •26 Билет
- •1)Формула полной вероятности.
- •27 Билет
- •2) Числовые характеристики непрерывных случайных величин
- •28 Билет
- •1)Классическое определение вероятности события. Свойства вероятности. Аксиоматическое определение вероятности.
- •29 Билет
- •1) Плотность распределения
- •30 Билет
- •1) Формула полной вероятности.
21 Билет
1) Случайное событие определено как событие, которое при осуществлении совокупности условий эксперимента может произойти или не произойти. Если при вычислении вероятности события никаких других ограничений, кроме условий эксперимента, не налагается, то такую вероятность называют безусловной; если же налагаются и другие дополнительные условия, то вероятность события называют условной. Например, часто вычисляют вероятность события В при дополнительном условии, что произошло событие А.
Условной вероятностью (два обозначения) называют вероятность события В, вычисленную в предположении, что событие А уже наступило.
Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло, т.е.
.
В частности, отсюда получаем .
Сложение и умножение вероятностей
Событие А называется частным
случаем события В,
если при наступлении А наступает
и В.
То, что А является
частным случаем В,
записываем
.
События А и В называются равными, если каждое из них является частным случаем другого. Равенство событий А и В записываем А = В.
Суммой событий А и В называется событие А + В, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий: А или В.
Теорема о сложении вероятностей. Вероятность появления одного из двух несовместныхсобытий равна сумме вероятностей этих событий.
Заметим, что сформулированная теорема справедлива для любого числа несовместных событий:
.
Если
случайные события
образуют
полную группу несовместных событий, то
имеет место равенство
.
Произведением событий А и В называется событие АВ, которое наступает тогда и только тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называютсясовместными, если при данном испытании могут произойти оба эти события.
Теорема о сложении вероятностей 2. Вероятность суммы совместных событий вычисляется по формуле
.
События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.
Теорема об умножении вероятностей. Вероятность произведения независимых событий А и Ввычисляется по формуле:
.
Вероятность произведения зависимых событий вычисляется по формуле условной вероятности (см. следующий раздел).
2)Выборка или выборочная совокупность — множество случаев (испытуемых, объектов, событий, образцов), с помощью определённой процедуры выбранных изгенеральной совокупности для участия в исследовании.
Характеристики выборки:
Качественная характеристика выборки – кого именно мы выбираем и какие способы построения выборки мы для этого используем.
Количественная характеристика выборки – сколько случаев выбираем, другими словами объём выборки.
Статистические ряды распределения представляют собой упорядоченное распределение единиц совокупности по группам и группировкам. Ряды распределения изучают структуру совокупности, позволяют изучить ее однородность, размах и границы. Ряды распределения, образованные по качественным признакам, называютатрибутивными. При группировке по количественному признаку выделяются вариационные ряды. Вариационные ряды – ряды распределения единиц совокупности по признакам, имеющим количественное выражение, т. е. образованы численными значениями.
Вариационные ряды по строению делятся на:
Дискретные (прерывные) – основаны на прерывных вариациях признака. Это такие ряды, где значения вариант имеют значения целых чисел (т. е. не могут принимать дробные значения). Дискретные признаки отличаются друг от друга на некоторую конкретную величину.
Интервальные (непрерывные) – имеют любые, в том числе и дробные количественные выражения и представлены в виде интервалов. Непрерывные признаки могут отличаться один от другого на сколь угодно малую величину.
Вариационные ряды имеют два элемента:
варианта (x)
частота (f)
Варианта – отдельное значение варьируемого признака, которое он принимает в ряду распределения.
Частота – численность отдельных вариант или каждой группы вариационного ряда. В некоторых случаях применяется частость. Частоты, выраженные в % или долях процента, называются частостями и рссчитываются как отношение локальной частоты варианты к сумме накопленных частот.
В свою очередь, частота бывает:
локальной
накопленной (кумулятивная – нарастающим итогом)
Если вариационный ряд имеет неравные интервалы, то частоты в отдельных интервалах не сопоставимы, т. к. зависят от ширины интервала. В этих случаях рассчитывают плотность распределения, которая дает правильное представление о характере распределения вариант (единиц совокупности). Плотность распределения, в свою очередь, бывает:
абсолютная плотность распределения – отношение частоты к величине (ширине) интервала
относительная плотность распределения – отношение частости к ширине интервала
Интервалы |
Локальная частота (f) |
Накопленная частота (Σf) |
Частость (ω) |
Плотность распределения (φ) |
20-30 |
3 |
3 |
0,3 |
0,03 |
30-40 |
5 |
8 |
0,5 |
0,05 |
40-50 |
1 |
9 |
0,1 |
0,01 |
50-60 |
1 |
10 |
0,1 |
0,01 |
Для характеристики рядов распределения применяются следующие показатели:
средняя степенная
мода
медиана
